

FRM financialriskmeter for Cryptos

Michael Althof

Vanessa Guarino

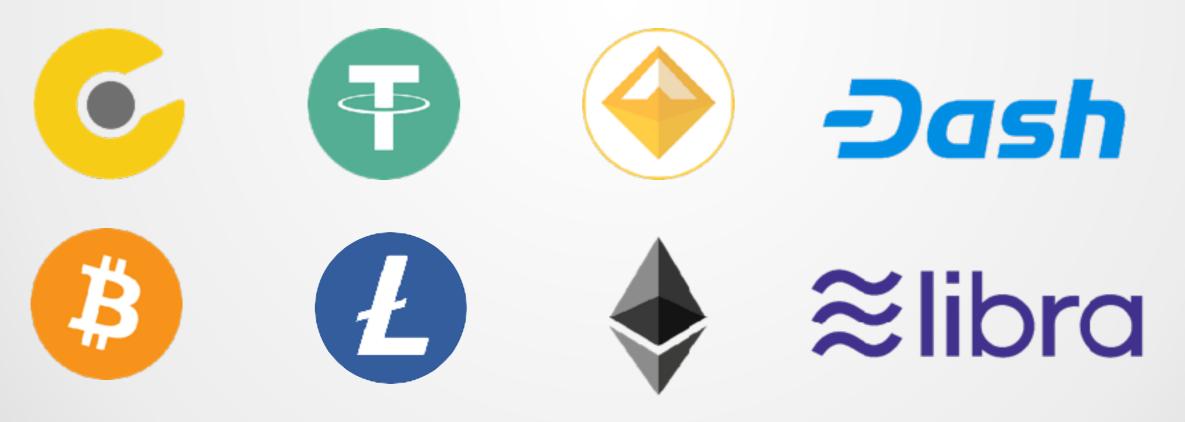
Rui Ren

Anna Shchekina

Humboldt-Universität zu Berlin Ivb.wiwi.hu-berlin.de Charles University, WISE XMU, NCTU 玉山学者

Tail Events (TE)

- TEs across Cryptos indicate increased risk
- CoVaR measures joint TEs between 2 risk factors
- CoVaR and other risk factors?
- TENET Tail Event NETwork risk, Härdle Wang Yu (2017) J E'trics
- FRM Financial Risk Meter for joint TEs



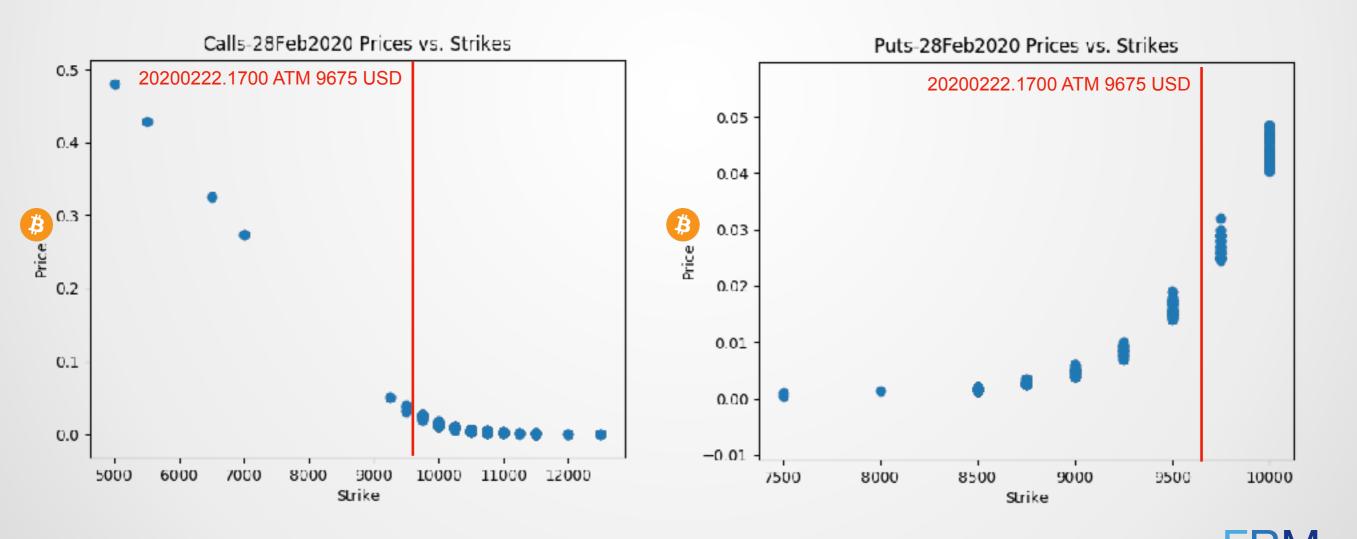
Risk Measures

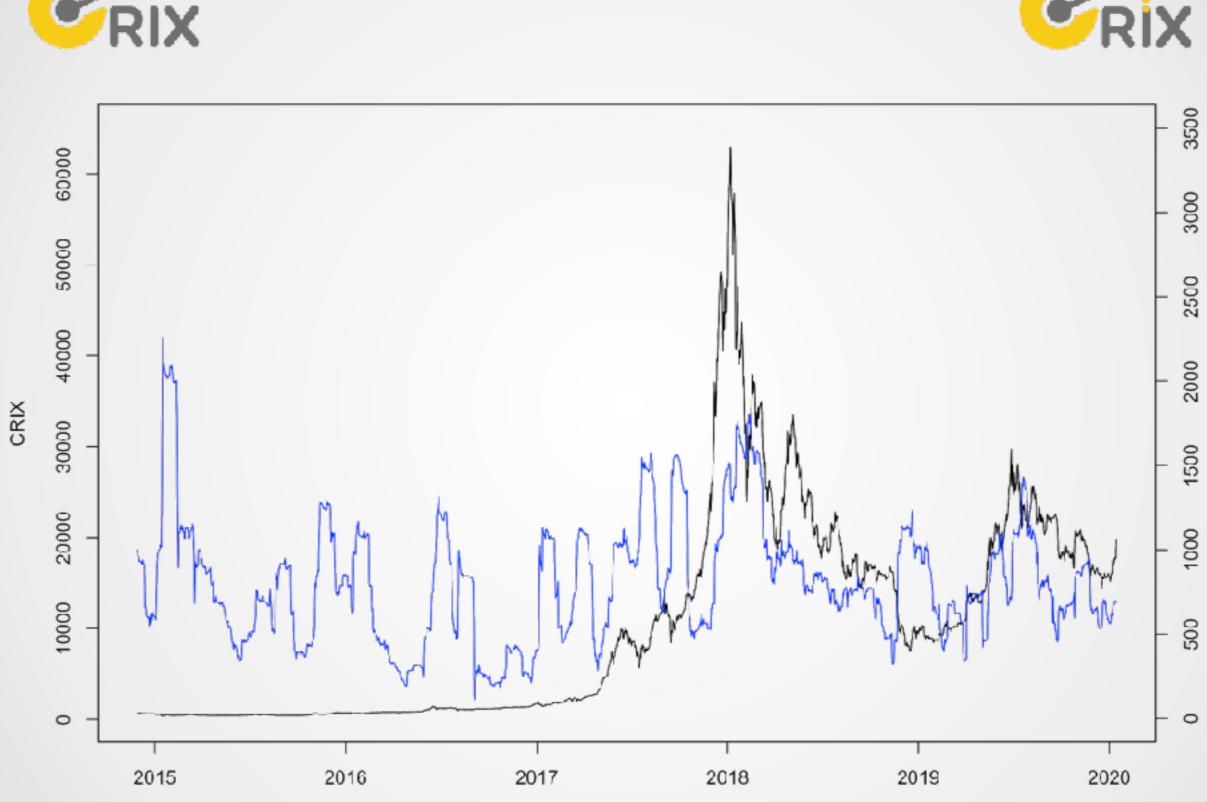
- VIX: IV based, does not reflect joint TEs
- CoVaR concentrates on a pair of risk factors
- □ CISS, Google trends, SRISK, ...
- FRM displays the full picture of TE dependencies
- Firamis.de/FRM financialriskmeter

Call and Puts on BTCs

□ Listed at Bloomberg since 20200113

Prices from 20200221.1600 - 20200222.1100 Timestamps precise in the range 1E-3 sec. Calls, Puts with maturity 20200228





Motivation

FRM for Cryptos

VCRIX

FRM

Outline

- 1. Motivation 🖌
- 2. Genesis
- 3. Framework
- 4. Applications
- 5. Node influence metrics
- 6. Sensitivity analysis
- 7. Network centrality
- 8. Portfolio Construction
- 9. Conclusions

 HRV

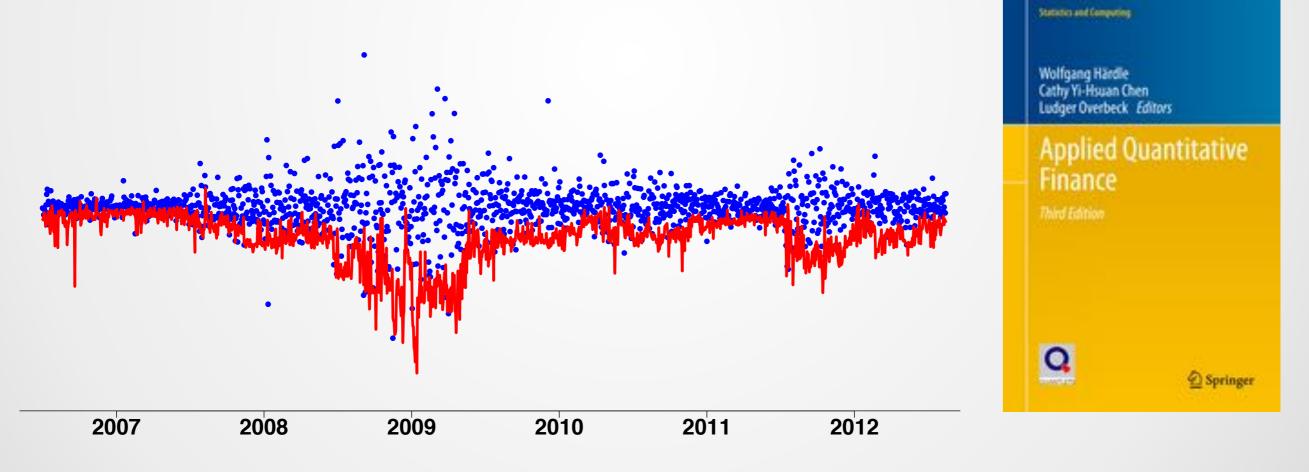
VaR Value at Risk

Probability measure based

$$P(X_{i,t} \le VaR_{i,t}^{\tau}) \stackrel{\text{def}}{=} \tau, \quad \tau \in (0,1)$$

• $X_{i,t}$ log return of risk factor (institution) i at t

□ VaRs (0.99, 0.01) based on RMA, Delta Normal Method



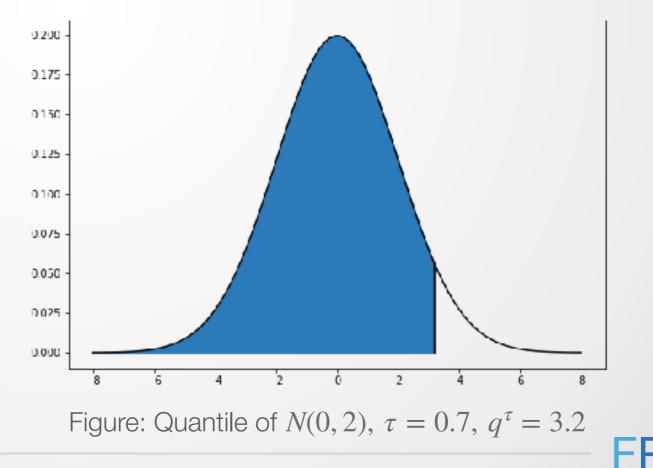
Quantiles and Expectiles

 $q^{\tau} = \arg\min_{\theta} \mathbf{E} \left\{ \rho_{\tau}(Y - \theta) \right\}$ notion For r.v. Y obtain tail event measure:

asymmetric loss function

$$\rho_{\tau}(u) = |u|^{c} |\tau - \mathbf{I}_{\{u < 0\}}|$$

c = 1 > quantiles c = 2 > expectiles



Expectile as Quantile

Conditional Value at Risk

Adrian and Brunnermeier (2016) introduced CoVaR

$$\mathsf{P}\{X_{j,t} \le CoVaR_{j|i,t}^{\tau} \mid X_{i,t} = VaR^{\tau}(X_{i,t}), M_{t-1}\} \stackrel{\text{def}}{=} \tau$$

 \square M_{t-1} vector of macro-related variables

□ Nonlinear features, $\tau = 0.05$

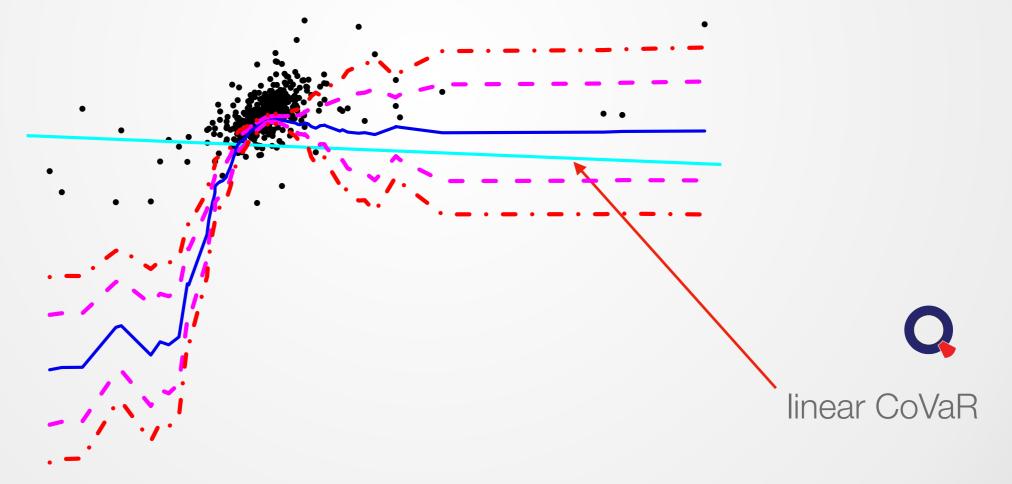


Figure: Goldman Sachs (Y), Citigroup (X), Confidence Bands, see Chao et al (2015)

 HRV

CoVaR and the magic of joint TEs

CoVaR technique

$$X_{i,t} = \alpha_i + \gamma_i^{\mathsf{T}} M_{t-1} + \varepsilon_{i,t}$$

$$X_{j,t} = \alpha_{j|i} + \beta_{j|i} X_{i,t} + \gamma_{j|i}^{\mathsf{T}} M_{t-1} + \varepsilon_{j,t}$$

$$F_{\varepsilon_{i,t}}^{-1}(\tau | M_{t-1}) = 0 \text{ and } F_{\varepsilon_{j,t}}^{-1}(\tau | M_{t-1}, X_{i,t}) = 0$$

$$\widehat{VaR}_{i,t}^{\tau} = \widehat{\alpha}_i + \widehat{\gamma}_i^{\mathsf{T}} M_{t-1}$$

$$\widehat{CoVaR}_{j|i,t}^{\tau} = \widehat{\alpha}_{j|i} + \widehat{\beta}_{j|i} \widehat{VaR}_{i,t}^{\tau} + \widehat{\gamma}_{j|i}^{\mathsf{T}} M_{t-1}$$

CoVaR: First calculate VaRs, then compute the TE given a stressed risk factor.

Linear Quantile Lasso Regression

$$r_{j,t}^{s} = \alpha_{j,t}^{s} + A_{j,t}^{s\top} \beta_{j}^{s} + \varepsilon_{j,t}^{s}$$
(1)
$$A_{j,t}^{s\top} \stackrel{\text{def}}{=} \left[M_{t-1}^{s}, r_{-j,t}^{s} \right]$$

where:

□ $r^{s}_{-j,t}$ log returns of all cryptos except $j \in 1:J$ at $t \in 2:T$

- □ *s* length of moving window
- \square M_{t-1}^s log return of macro prudential variable at time t-1
- For application, consider J = 15, s = 63

11

Lasso Quantile Regression

$$\min_{\alpha_{j}^{s},\beta_{j}^{s}} \left\{ n^{-1} \sum_{t=s}^{s+(n-1)} \rho_{\tau} (r_{j,t}^{s} - \alpha_{j}^{s} - A_{j,t}^{s\top} \beta_{j}^{s}) + \lambda_{j}^{s} \parallel \beta_{j}^{s} \parallel_{1} \right\}$$
(2)

- □ Check function $\rho_{\tau}(u) = |u|^c |\tau I_{\{u < 0\}}|$ with c = 1, 2 corresponding to quantile, expectile regression
 - > λ creates size of "active set", i.e. spillover
 - $\triangleright \lambda$ is sensitive to residual size, i.e. TE size
 - $\triangleright \lambda$ reacts to singularity issues, i.e. joint TEs

12

λ Role in Linear Lasso Regression

Osborne et al. (2000)

Dependence, time-varying, institution-specific

Size of model coefficients depends on,

 \square λ depends on:

- Residual size
- Condition of design matrix
- Active set

λ Role in Linear Quantile Regression

 \Box λ size of estimated LQR coefficients Li Y, Zhu JL (2008)

$$(\alpha - \gamma)^{\top} = \tau \operatorname{I}_{\{Y - X\beta(\lambda) > 0\}} + (\tau - 1) \operatorname{I}_{\{Y - X\beta(\lambda) < 0\}}$$

Average penalty: indicator for tail risk,

$$FRM^t \stackrel{def}{=} J^{-1} \sum_{j=1}^J \lambda_j^t$$

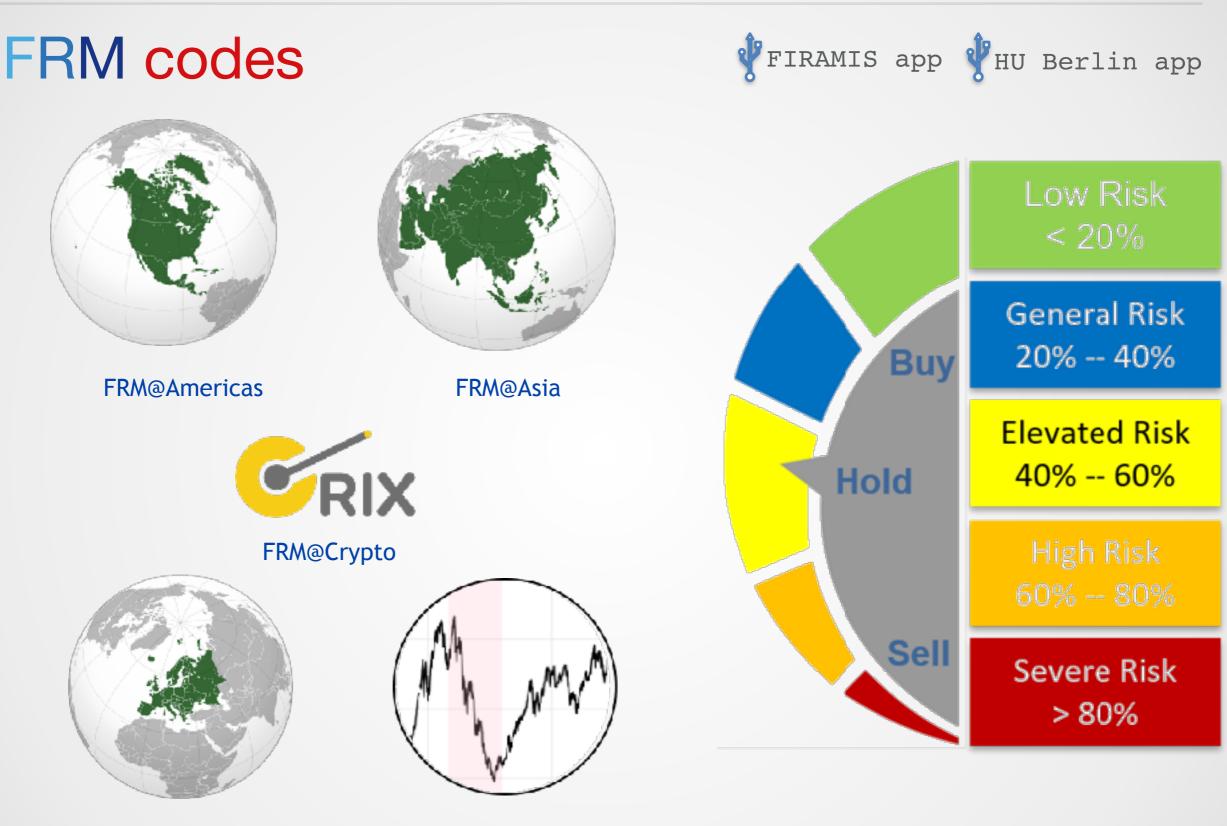
□ The FRM time series is one index for joint TEs!

14

λ Selection

□ Generalized approximate cross-validation (GACV) (Yuan, 2006)

min GACV(
$$\lambda_j^s$$
) = min $\frac{\sum_{t=s}^{s+(n-1)} \rho_{\tau}(r_{j,t}^s - \alpha_j^s - A_{j,t}^{sT} \beta_j^s)}{n - df}$ (3)
Where: df dimensionality of fitted model
 $\therefore \lambda$ as function of j, t
 \therefore Distribution of λ
 \therefore ID the TE drivers



FRM for Cryptos

FRM@iTraxx

FRM@Crypto Data

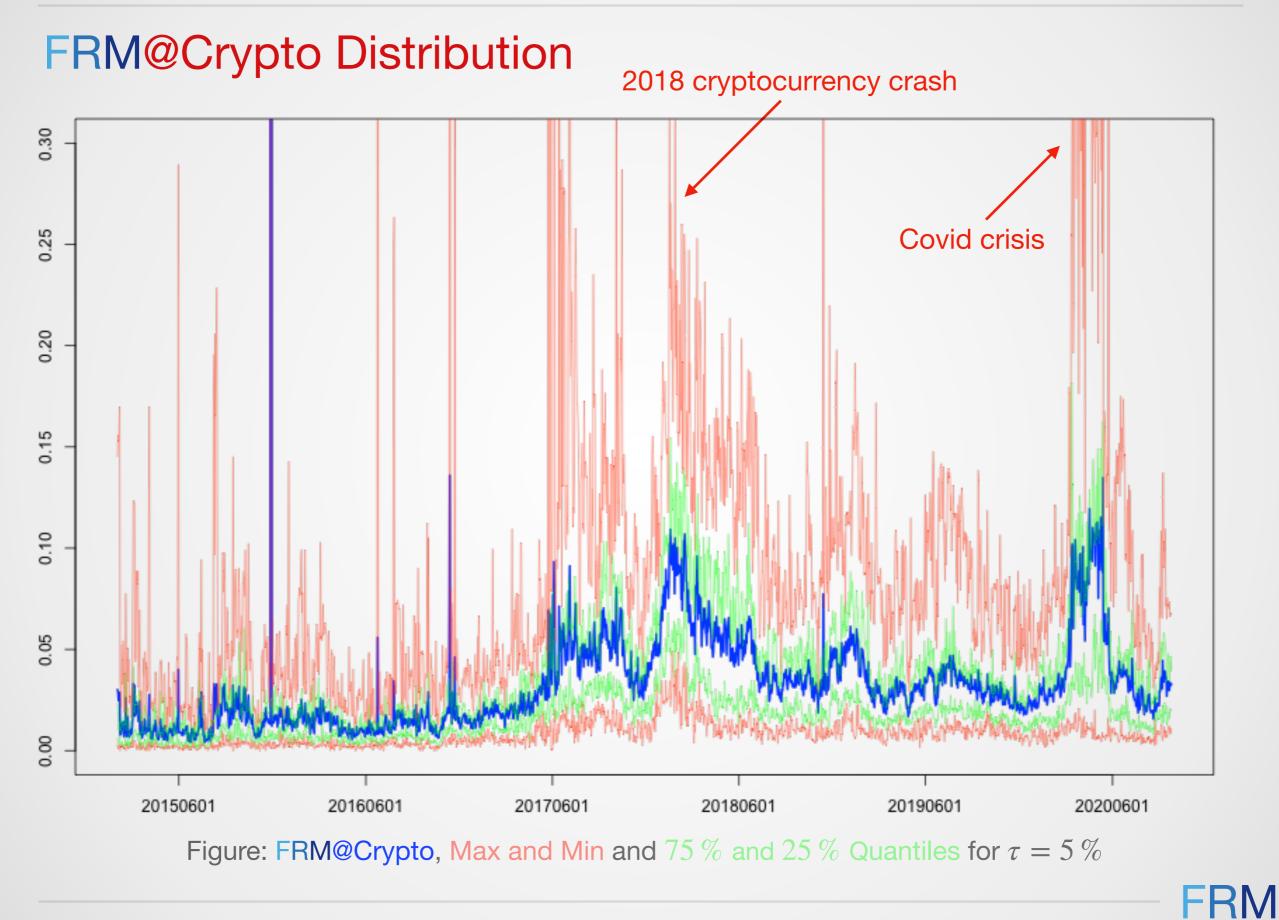
- 15 largest cryptocurrencies
- 6 macro related variables
- □ Quantile level $\tau = 0.05, 0.10, 0.25, 0.50$
- \Box Time window s = 63, 21
- ☑ Time frame: 2014–2020
- Macroeconomic risk factors:
 - US dollar index (average of USD vs main non-crypto currencies)
 - Yield level in USD (carry component for the drift)

 - CVIX (same as VIX, but on major fiat currencies)

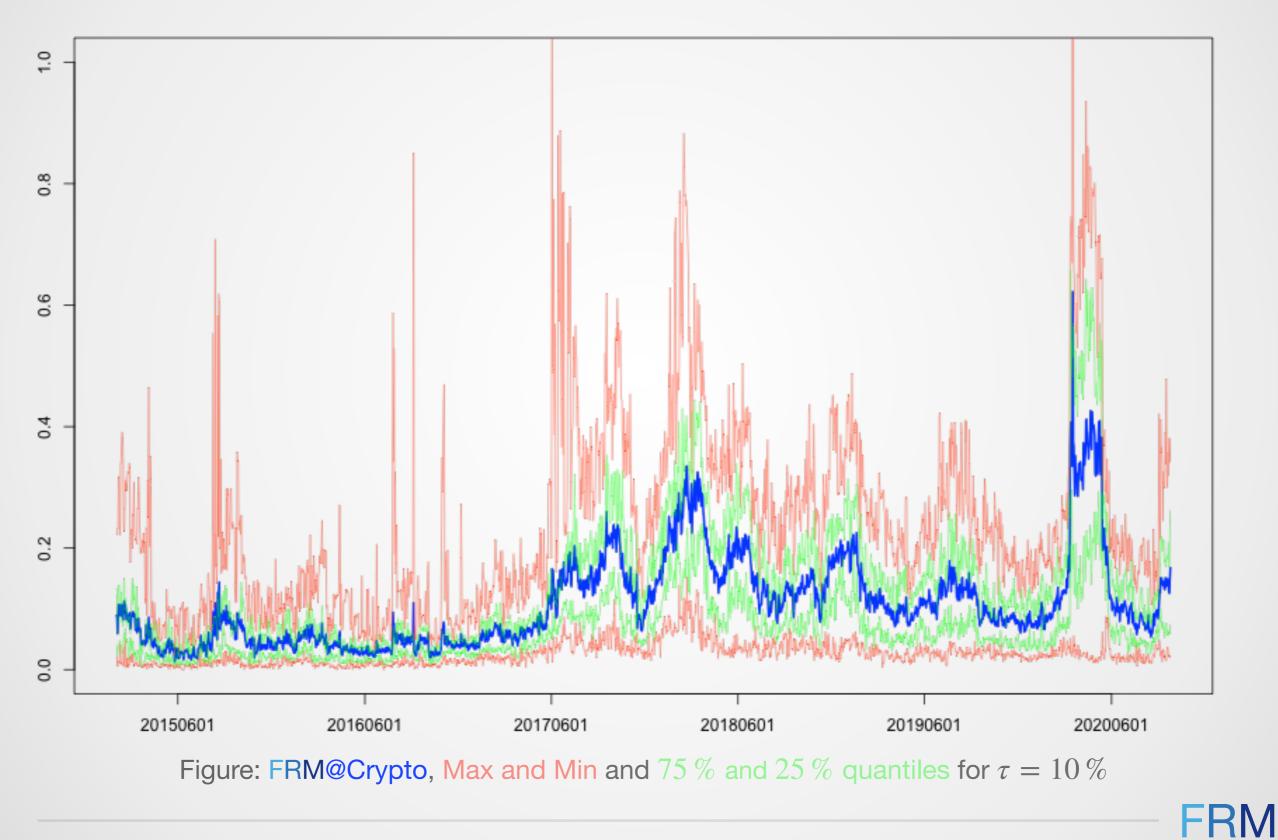
► S&P500

Methodology

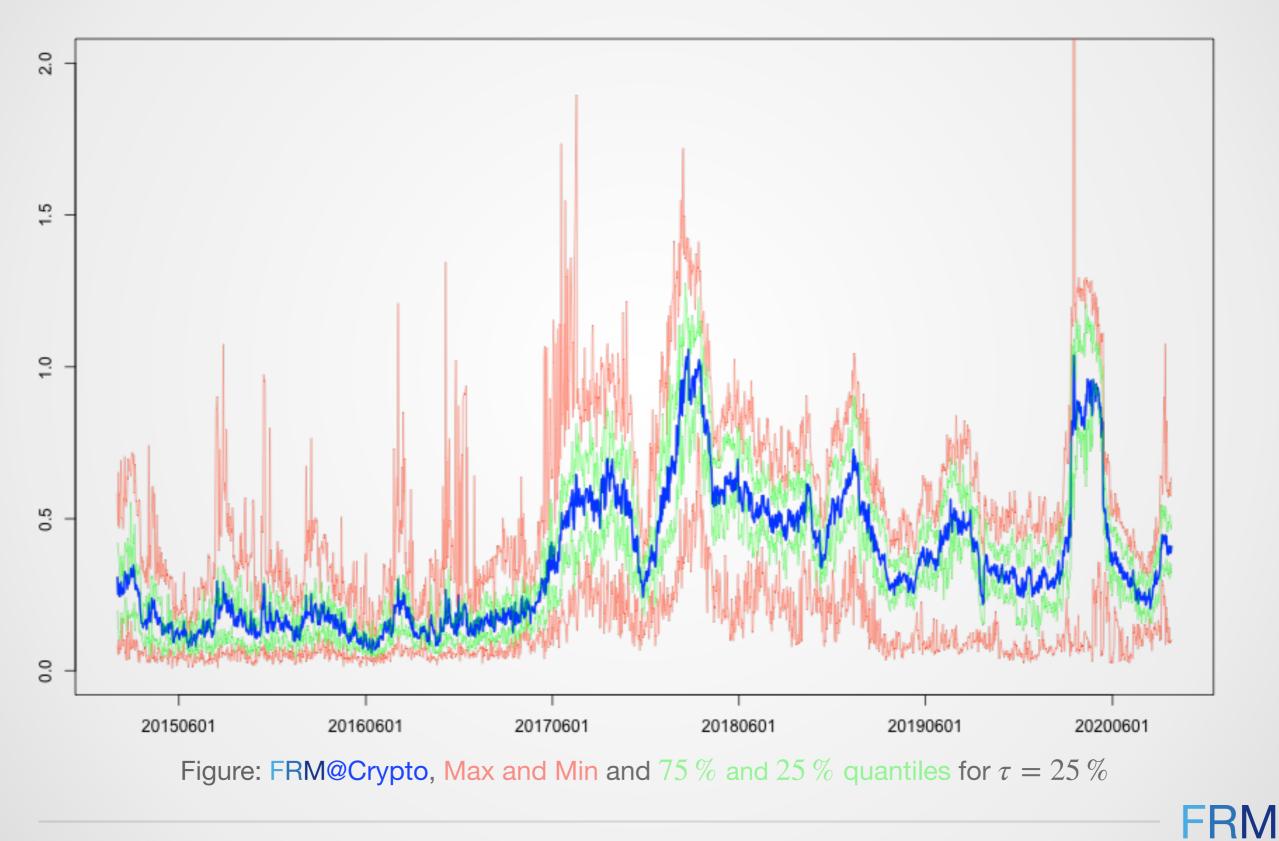
- Obtain risk driver list of all historically active index members
- Download daily rates in same currency (USD)
- □ Sort market cap decreasingly (to select J biggest risk drivers)
- Calculate returns
- On every trading day
 - Select J biggest risk driver's returns over s trading days
 - Attach returns of macroeconomic risk factors
 - Calculate λ for all companies
 - Calculate average λ , etc.
 - Store active set



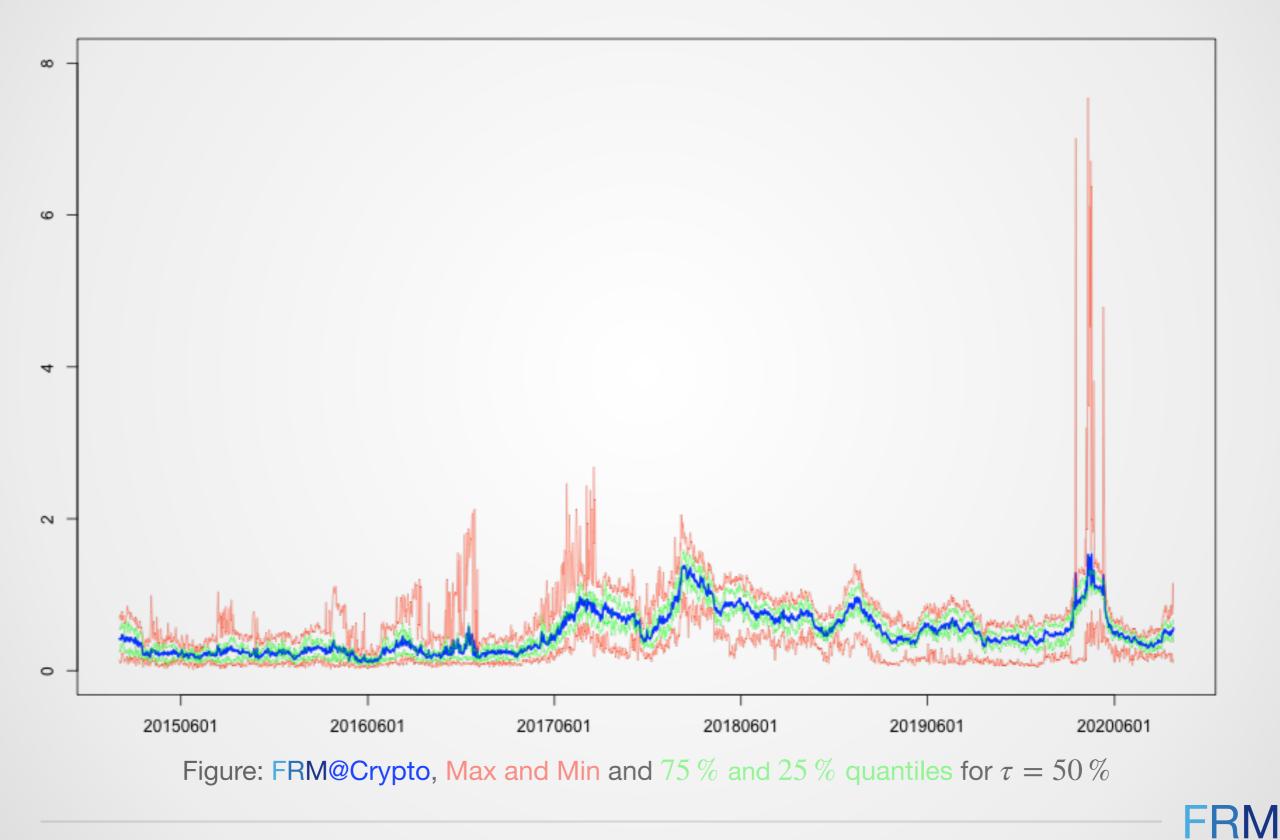
FRM@Crypto Distribution



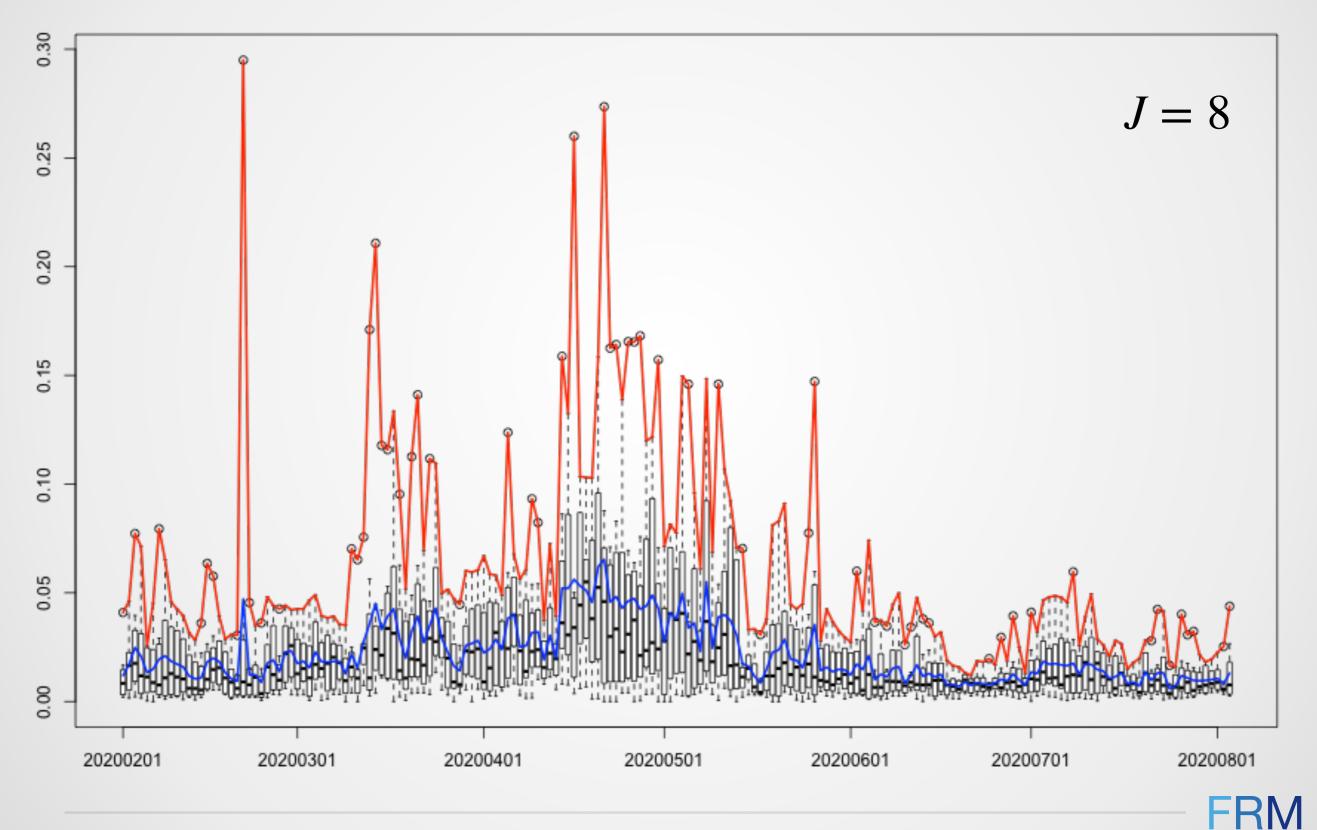
FRM@Crypto Distribution



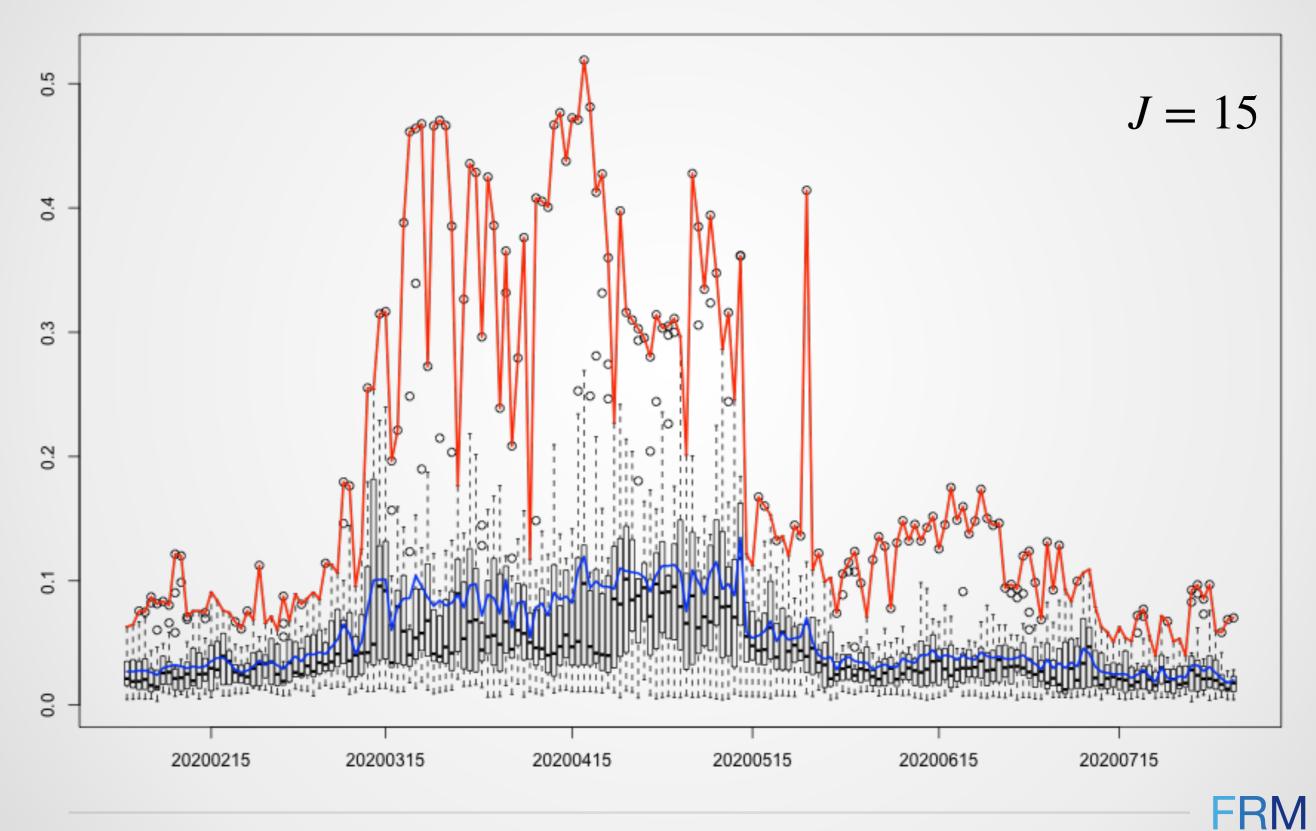
FRM@Crypto Distribution



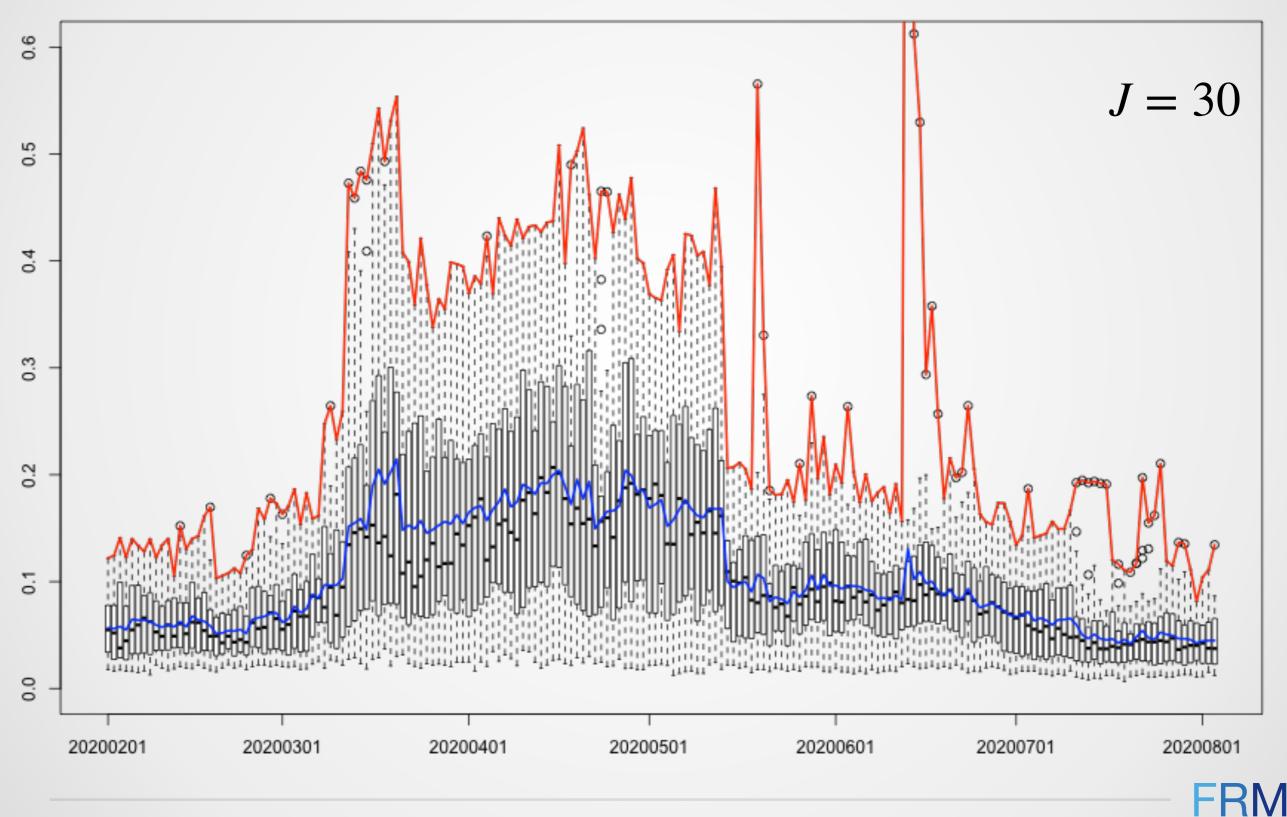
BTC and ETH dominate the market - FRM reflects?



BTC and ETH dominate the market - FRM reflects?



BTC and ETH dominate the market - FRM reflects?



Tail risk and window size sensitivity: FRM@Crypto Index

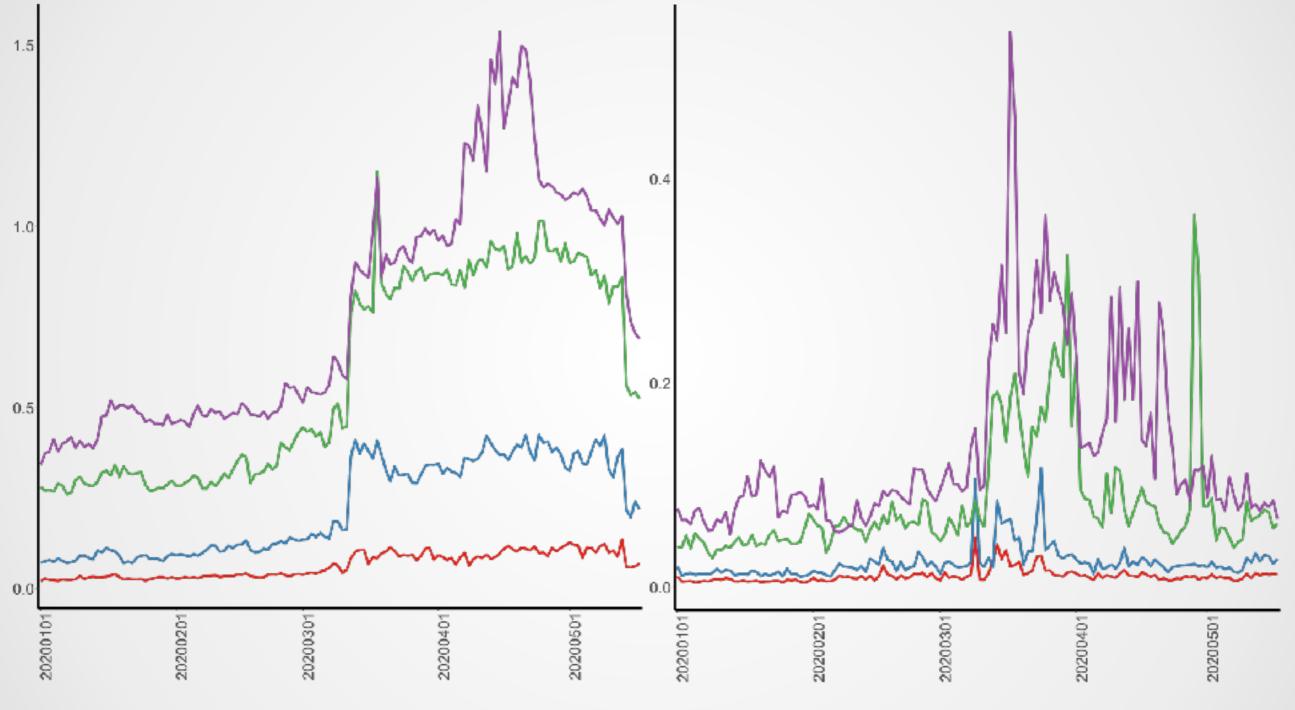


Figure: FRM@Crypto index for tail risk $\tau = 5\%$, 10%, 25%, 50% for s = 63 (left) and s = 21 (right). Data from 01 January 2020 to 17 May 2020.

FRM for Cryptos

FRM

Tail risk and window size sensitivity: CoStress

$\tau = 0$.05	τ =	= 0.10	τ =	= 0.25	$\tau = 0.50$			
Crypto	Frequency	Crypto	Frequency	Crypto	Frequency	Crypto	Frequency		
BTC	112	BTC	95	XRP	93	BTC	116		
ETH	76	LTC	83	INNBCL	90	XRP	97		
LTC	61	ETH	63	TAGZ5	80	INNBCL	87		
BSV	57	INNBCL	57	\mathbf{ETH}	73	BSV	65		
INNBCL	57	BCH	44	BTC	70	TAGZ5 65			
τ :	= 0.05	τ =	= 0.10	$\tau =$	0.25	au = 0	0.50		
τ Crypto		τ = Crypto	= 0.10 Frequency		0.25 Frequency		0.50 Frequency		
Crypto	Frequency	Crypto	Frequency	Crypto	Frequency	Crypto I	Frequency		
Crypto BCH	Frequency 74	Crypto BCH	Frequency 79	Crypto BCH	Frequency 81	Crypto I EOS	Frequency 85		
Crypto BCH LINK	Frequency 74 74	Crypto BCH EOS	Frequency 79 63	Crypto BCH ADA	Frequency 81 79	Crypto I EOS XMR	Frequency 85 84		

Table: Crypto currencies with high (top table) and low (bottom table) CoStress with the number of days they appeared in top/bottom 5 for tail risk $\tau = 5\%$, 10%, 25%, 50%.

Data from 1 January 2020 to 17 May 2020.

FRM@Crypto Model Selection Methods

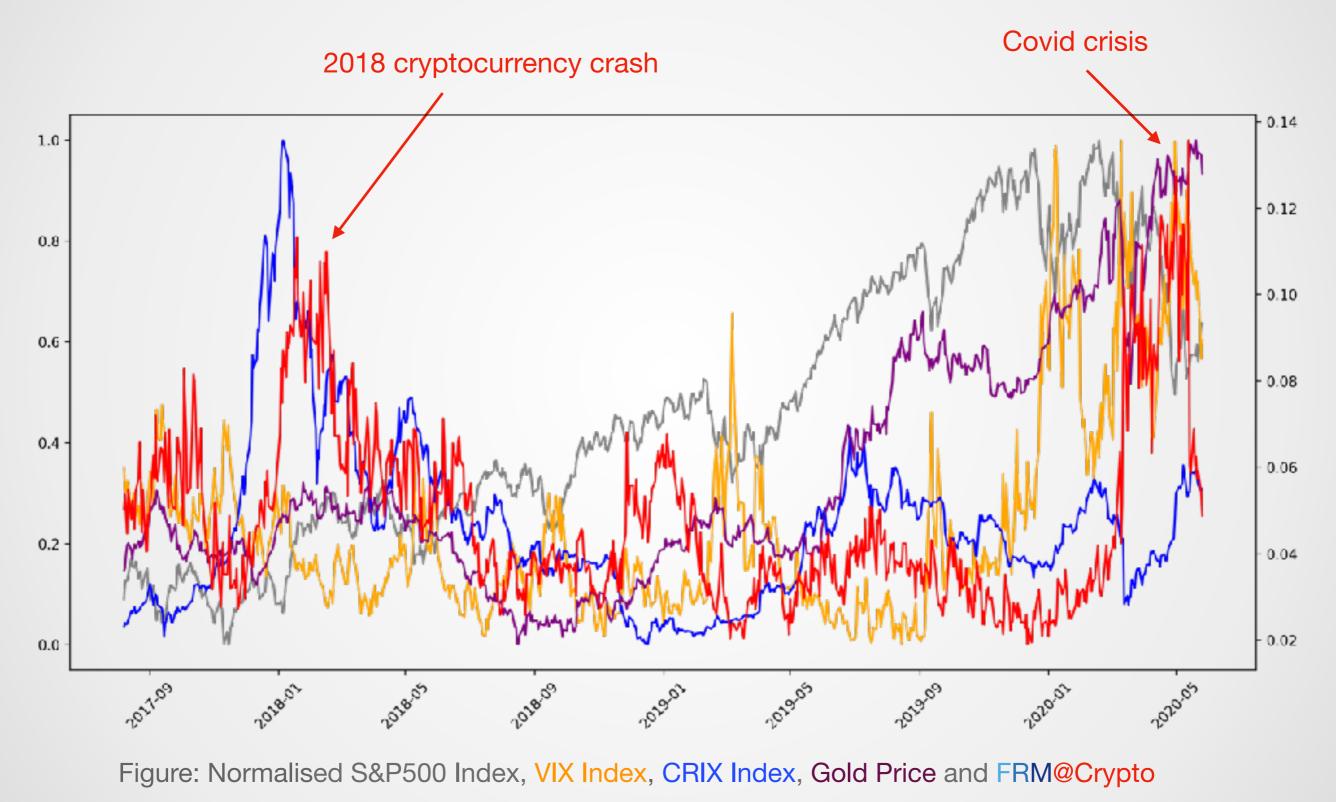
		$\tau = 0.05$			$\tau = 0.10$		$\tau = 0.50$					
	λ_{j}	SIC_j	$GACV_j$	λ_j	SIC_j	$GACV_j$	λ_j	SIC_j	$GACV_j$			
BTC	0.039	-6.633	0.001	0.266	-5.928	0.002	0.837	-4.387	0.011			
ETH	0.018	-2.495	0.074	0.030	-1.974	0.130	0.702	-1.644	0.193			
XRP	0.034	-6.871	0.001	0.368	-5.683	0.003	0.828	-4.702	0.008			
BCH	0.071	-6.742	0.001	0.307	-5.947	0.002	0.763	-4.794	0.007			
BSV	0.058	-6.686	0.001	0.292	-5.773	0.003	0.504	-5.011	0.006			
LTC	0.052	-6.396	0.001	0.097	-5.747	0.003	0.729	-4.516	0.010			
EOS	0.030	-4.516	0.009	0.064	-4.128	0.015	0.402	-3.609	0.025			
BNB	0.088	-7.206	0.001	0.039	-6.633	0.001	0.929	-4.459	0.011			
XTZ	0.091	-6.505	0.001	0.206	-5.885	0.002	0.742	-4.577	0.009			
LINK	0.132	-6.824	0.001	0.236	-5.980	0.002	0.698	-4.750	0.008			
ADA	0.051	-6.314	0.002	0.229	-5.667	0.003	0.802	-4.509	0.010			
XLM	0.058	-6.534	0.001	0.194	-5.680	0.003	0.579	-4.523	0.010			
XMR	0.160	-6.584	0.001	0.277	-5.835	0.003	0.770	-4.778	0.008			
TRX	0.080	-6.236	0.002	0.220	-5.250	0.005	0.541	-4.684	0.009			
HT	0.059	-6.513	0.001	0.226	-5.716	0.003	0.526	-4.679	0.008			

Table: λ_i and effective dimension of the *j*-fitted models, via solution path of the L1-norm QR algorithm

and formula for $\tau = 5\%$, 10%, 50%. In all the settings s = 63, J = 15.

Data from 1 January 2020 to 17 May 2020.

Flight into Cash: 2018 vs 2020 Crises



FRM for Cryptos

FRM

FRM@Crypto Adjacency Matrix with Macro Variables

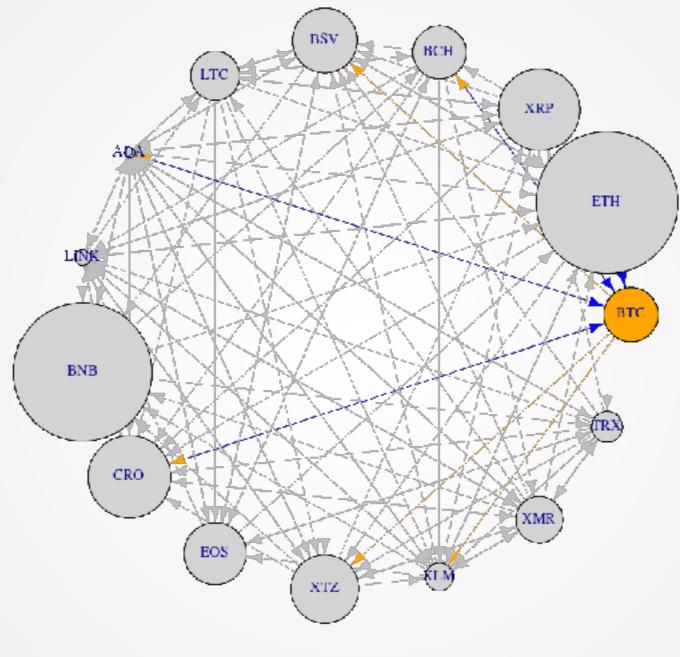
□ $\tau = 0.05$, 12 February 2018

	втс	ETH	XRP	BCH	ADA	LTC	NEO	XLM	EOS	MIOTA	XEM	DASH	XMR	LSK	TRX	1Υ	CVIX	ДΧΥ	SPX	VIX	VCRIX
BTC	0.00	0.00	0.13	0.00	0.04	0.10	0.00	0.00	0.04	0.07	-0.12	0.00	0.13	0.00	0.00	0.00	0.00	0.00	0.00	-0.11	0.17
ETH	0.00		0.03	0.07		0.24	0.10			0.01		0.04		0.13	0.02					-0.14	0.00
XRP	0.00			0.33	-0.03		-0.03	0.35	0.07		0.17			-0.13						0.04	0.14
BCH	0.00	0.18	-0.03				0.08			-0.05	0.00	0.45	0.32		0.01					0.08	0.00
ADA	0.00																				0.00
LTC	0.26	0.23							0.02	0.16	0.00		-0.01								0.00
NEO	0.00		0.07	0.24	0.00	0.18	0.23	0.02		0.15	0.01				0.02						0.00
XLM	0.00																				0.00
EOS	0.00																				0.00
ΜΙΟΤΑ	0.00																				0.00
XEM	0.00	0.12	0.19	0.04		0.06	0.10	0.19			0.13				0.06						0.00
DASH	0.00		0.10	0.12	0.40					0.04	0.07		0.25		-0.14						0.00
XMR	0.00		0.01	0.23	0.10		0.18			0.08				0.05	0.02					4	0.00
LSK	1.12		0.06	0.20		0.00	-0.52	-0.03				0.11	0.16								0.26
TRX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00

Few traditional macro variables explain crypto currency tail behaviour

FRV

Visualising the Active Set: FRM@Crypto the Movie



20200804 FRM: 0.0226

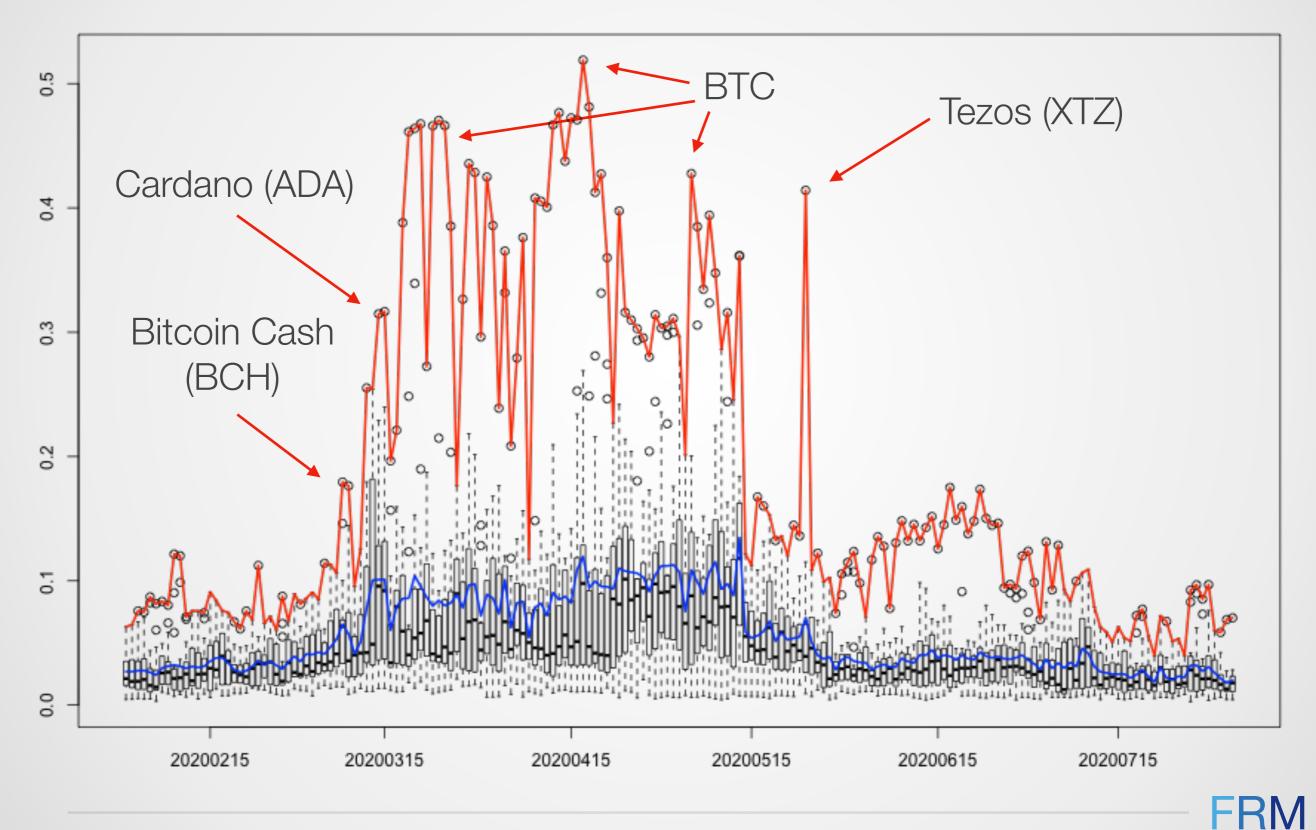
Figure: Network analysis for FRM@Crypto from 4 August 2020 to 24 September 2020.

Size of the node corresponds to λ

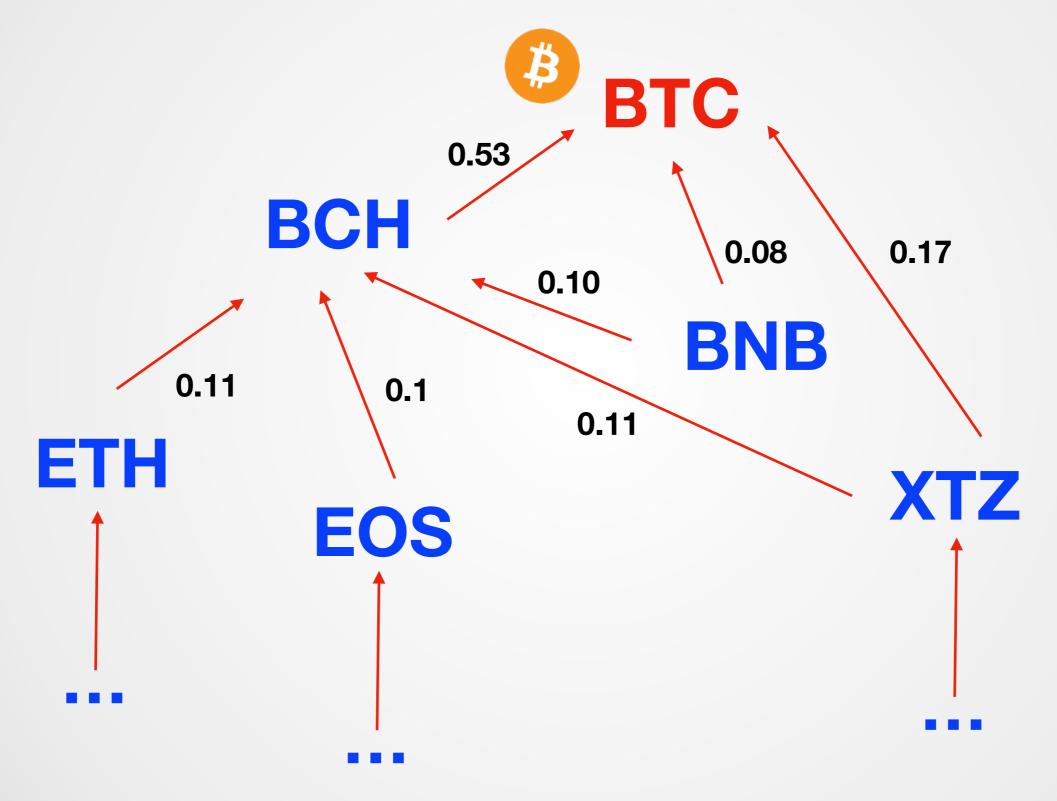
FRM for Cryptos

FRM

FRM@Crypto Distribution under Covid Crisis



29 April 2020 — Marginal Return Contribution to BTC



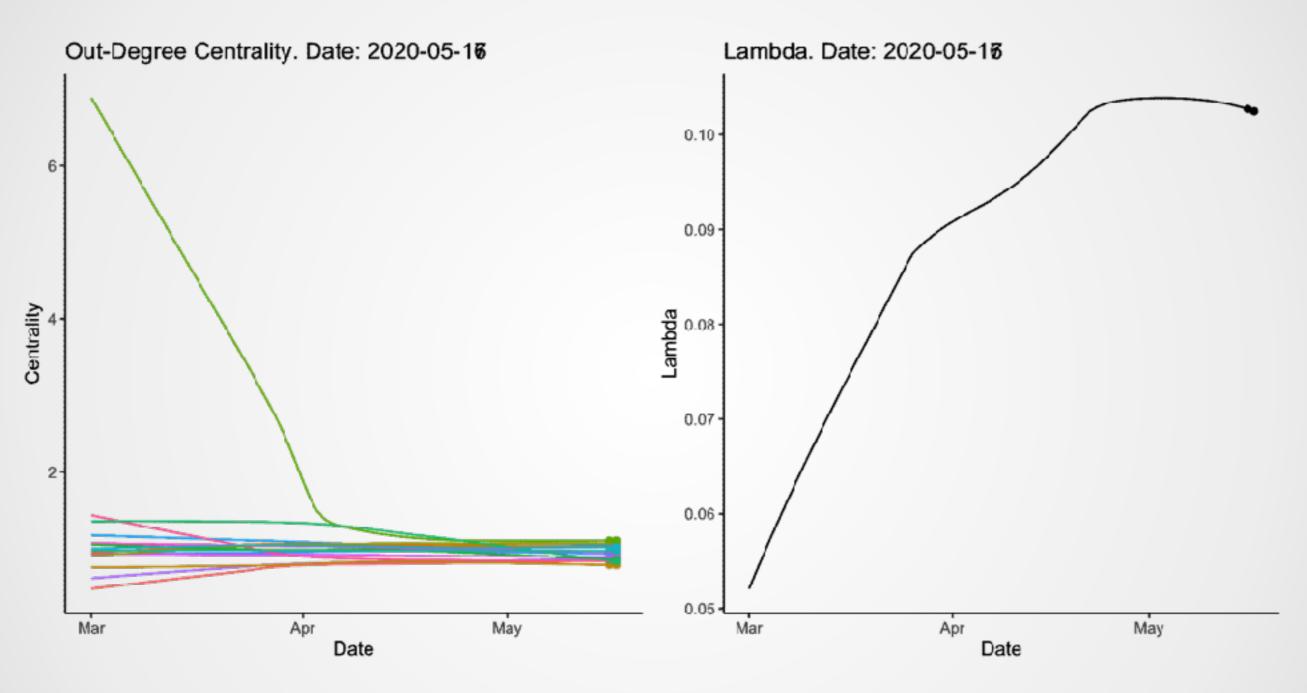
FRM

Types of Centrality of a Node

Degree centrality

- In-degree how many other coins affect the node
- Out-degree how many other coins the node affects
- □ Closeness shortest path between the node and all other nodes
- Betweenness the number of times a node acts as a bridge along the shortest path between two other nodes
- Eigenvector takes into account that connections to highscoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes

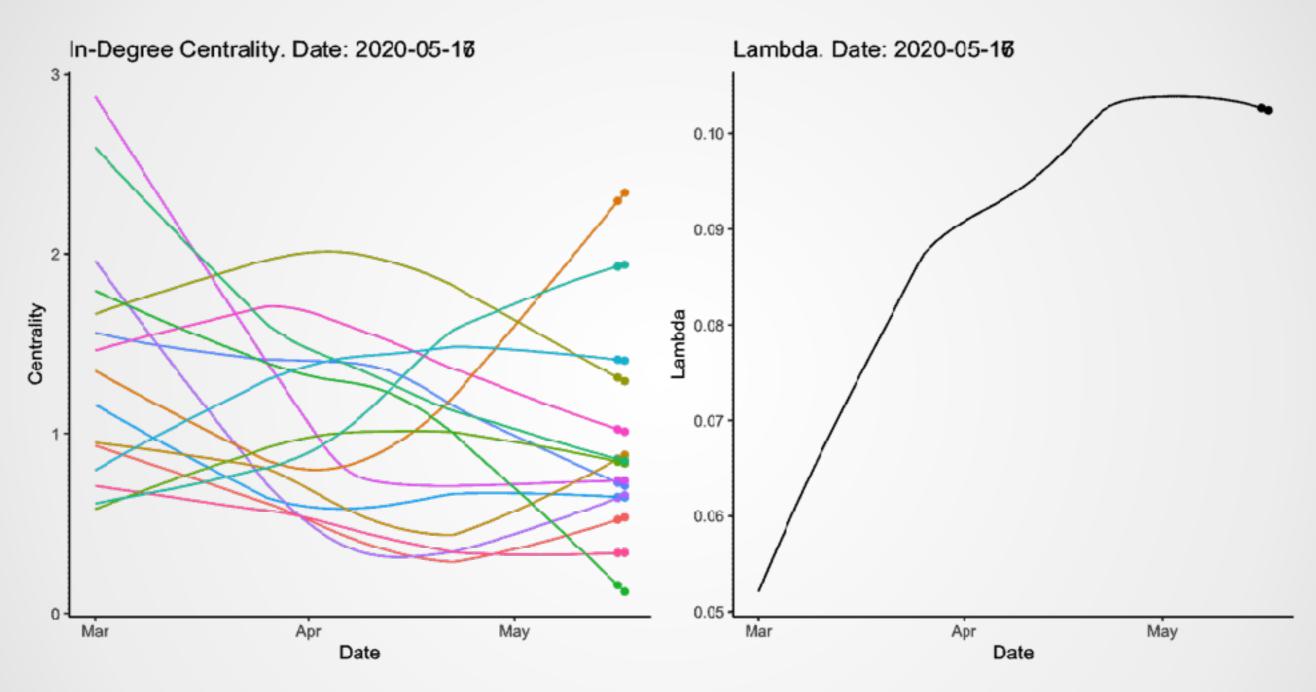
FRM@Crypto Out-Degree Centrality



Left-hand side panel: # of outbounds links of BTC, ETH, XRP, BCH, BSV, LTC, EOS, BNB, XTZ, LIN, ADA, XLM, XMR, TRX, HT. Right-hand side panel: FRM index over time. Data from 01 March 2020 to 17 May 2020

FRM

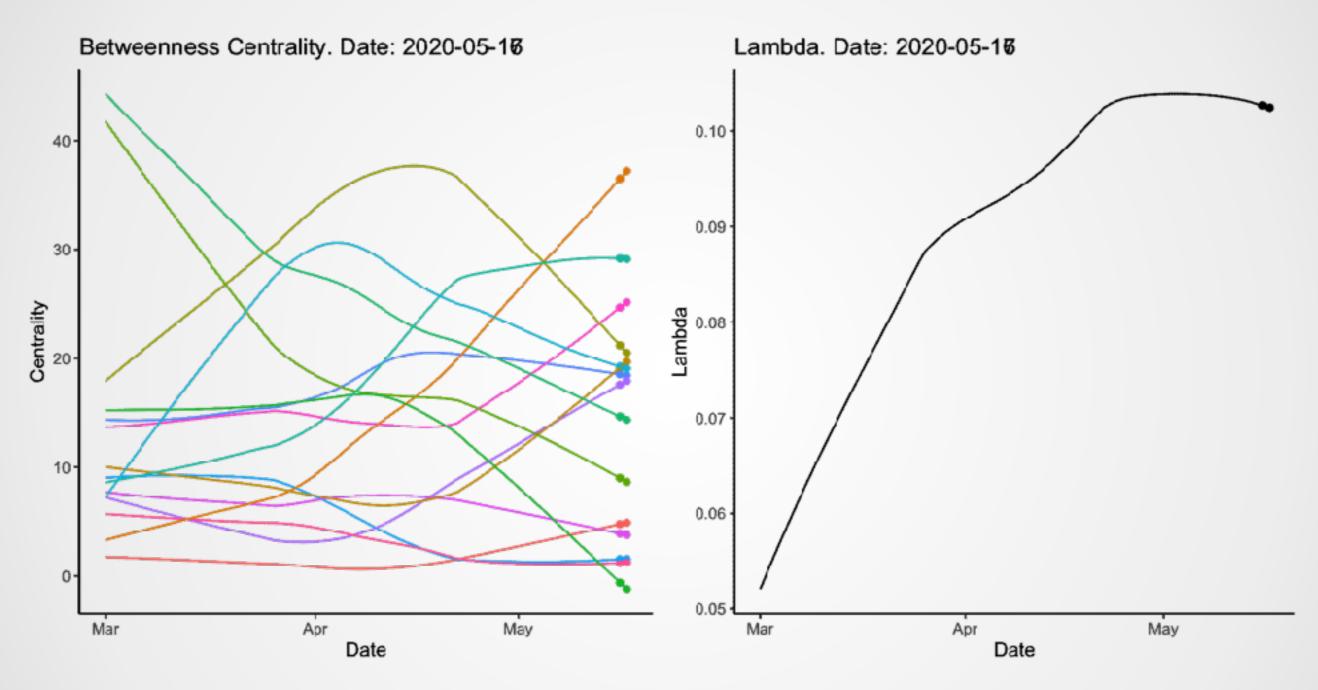
FRM@Crypto In-Degree Centrality



Left-hand side panel: # of inbound links of BTC, ETH, XRP, BCH, BSV, LTC, EOS, BNB, XTZ, LIN, ADA, XLM, XMR, TRX, HT. Right-hand side panel: FRM index over time. Data from 01 March 2020 to 17 May 2020

FRM

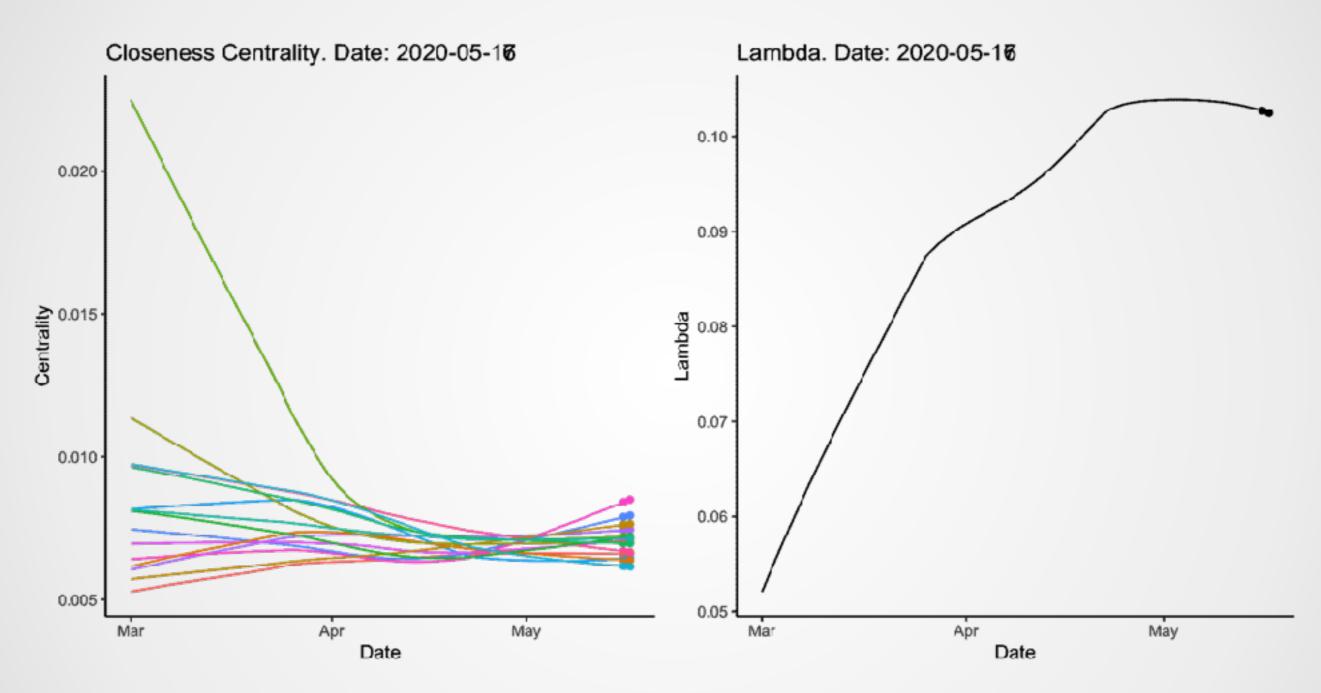
FRM@Crypto Betweenness Centrality



Left-hand side panel: "bridge" behaviour measure for BTC, ETH, XRP, BCH, BSV, LTC, EOS, BNB, XTZ, LIN, ADA, XLM, XMR, TRX, HT. Right-hand side panel: FRM index over time. Data from 01 March 2020 to 17 May 2020

FRM

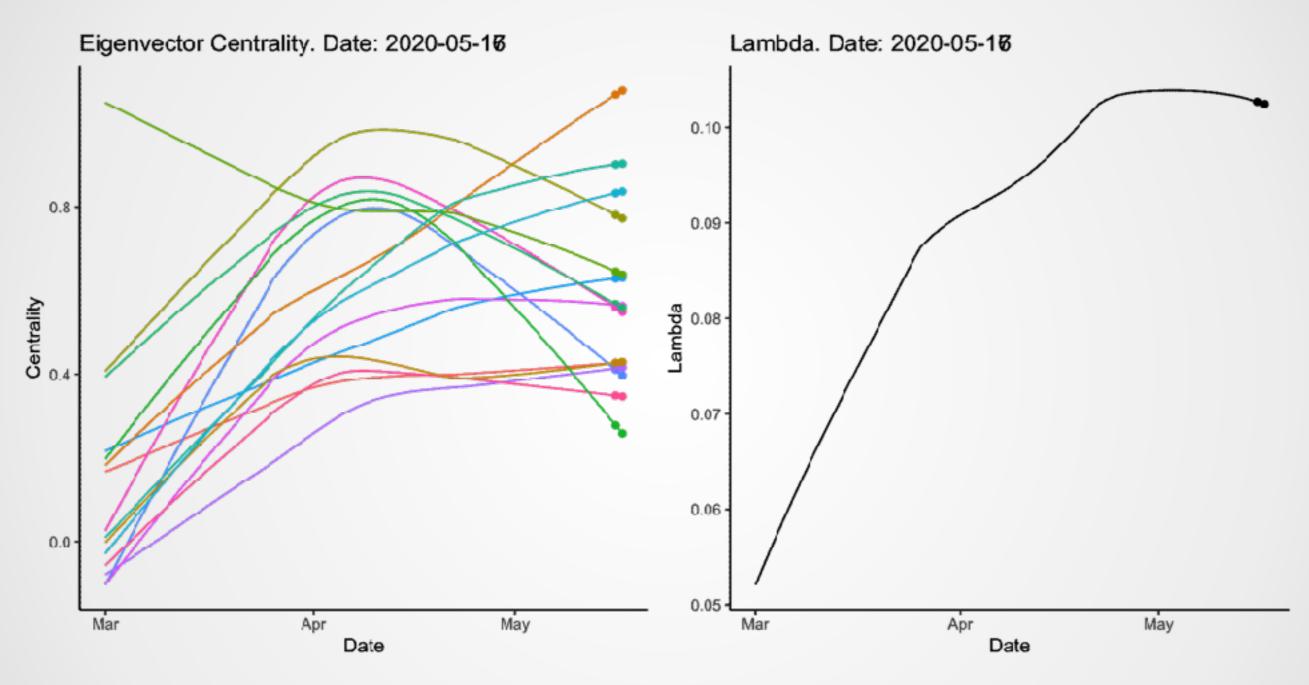
FRM@Crypto Closeness Centrality



Left-hand side panel: fastness in influencing of BTC, ETH, XRP, BCH, BSV, LTC, EOS, BNB, XTZ, LIN, ADA, XLM, XMR, TRX, HT. Right-hand side panel: FRM index over time. Data from 01 March 2020 to 17 May 2020

FRM

FRM@Crypto Eigenvector Centrality



Left-hand side panel: normalised eigenvector centrality of BTC, ETH, XRP, BCH, BSV, LTC, EOS, BNB, XTZ, LIN, ADA, XLM, XMR, TRX, HT. Right-hand side panel: FRM index over time. Data from 01 March 2020 to 17 May 2020

FRM

From Nodes to Network Centralisation

Extend the notion of *point centrality* on the entire network.

1. Average of all nodes \succ spirit of FRM

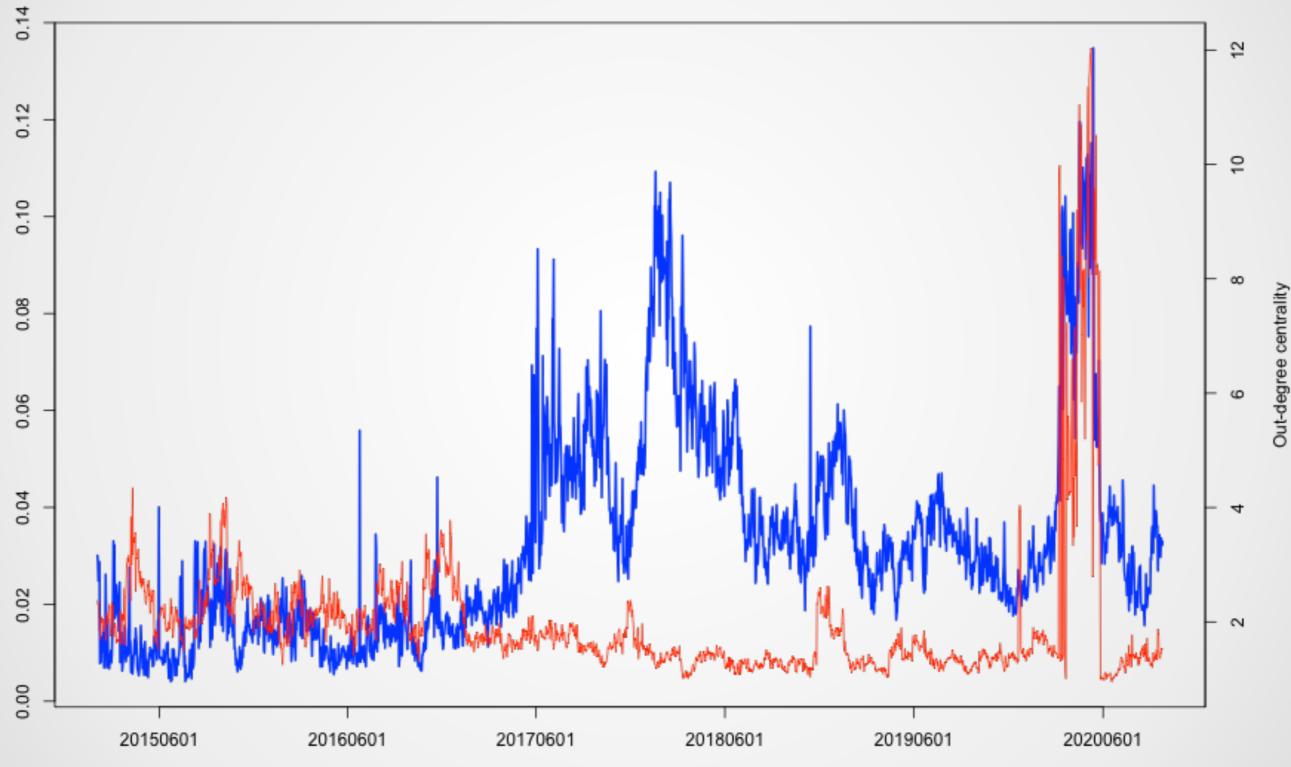
$$C = \sum_{i=1}^{M} C(p_i)$$

2. Freeman centralisation

$$C = \frac{\sum_{i=1}^{M} [C(p_*) - C(p_i)]}{\max \sum_{i=1}^{M} [C(p_*) - C(p_i)]} = \frac{\sum_{i=1}^{M} [C(p_*) - C(p_i)]}{M^2 - 3M + 2}$$

 p_* is most central node, max is over all graphs with M nodes.

FRM@Crypto vs Average Degree Centrality

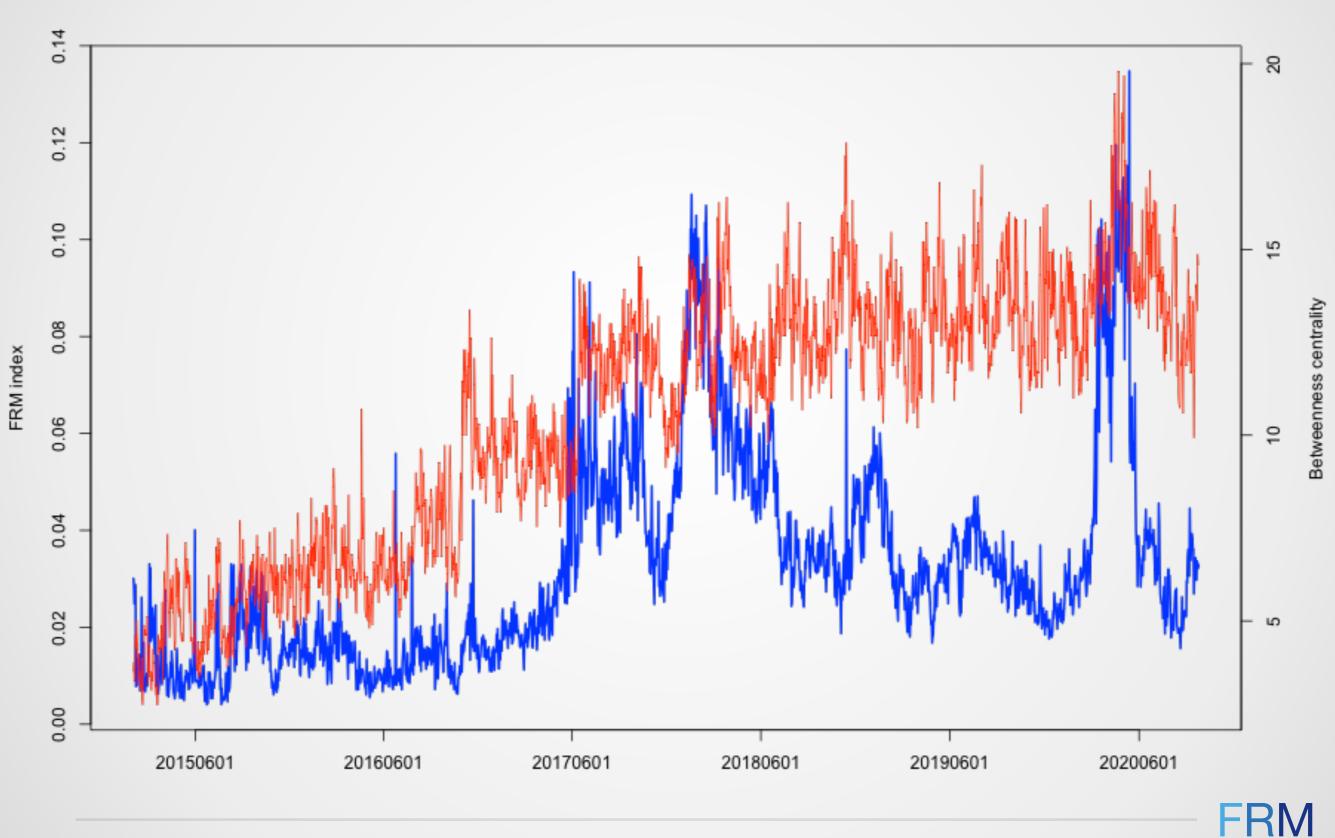


41

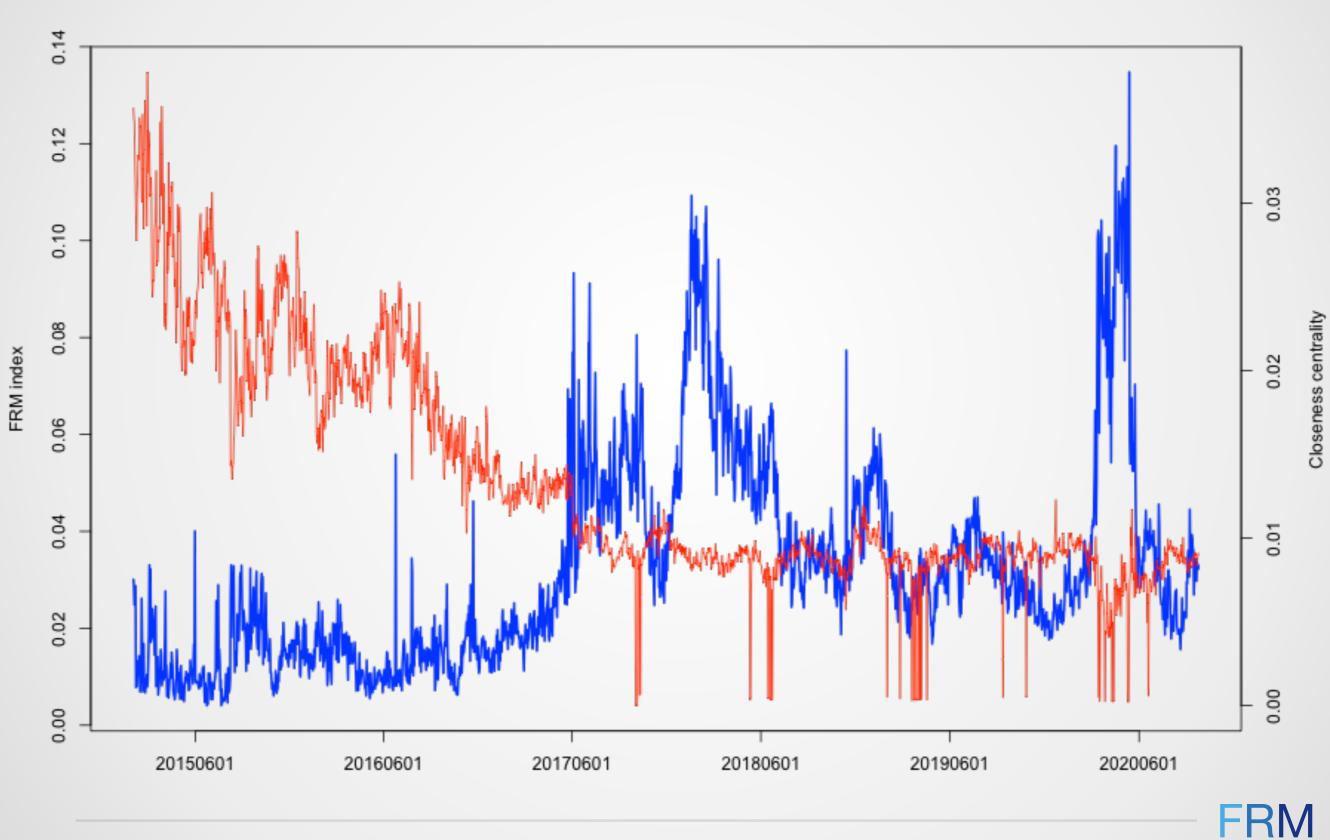
FRM

FRM index

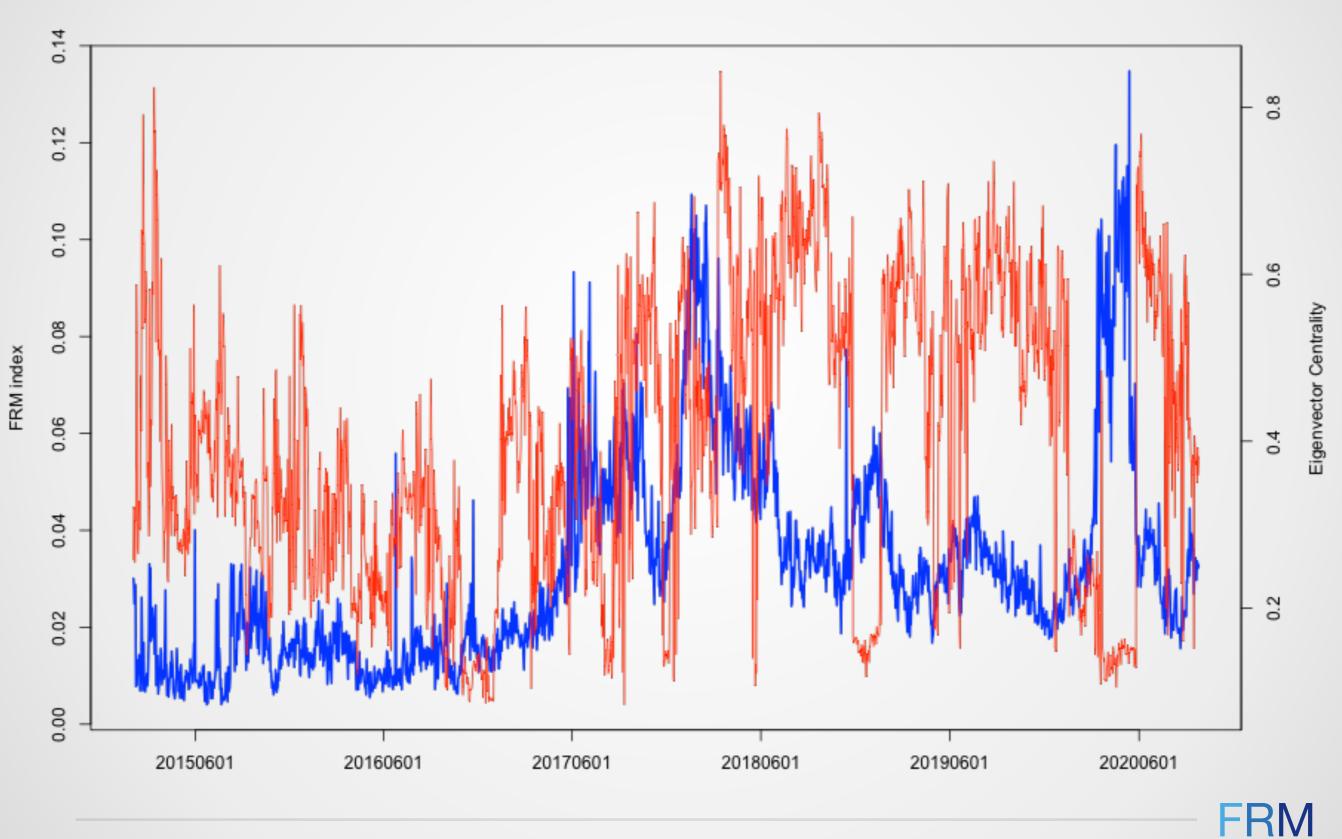
FRM@Crypto vs Average Betweenness Centrality



FRM@Crypto vs Average Closeness Centrality



FRM@Crypto vs Average Eigenvector Centrality

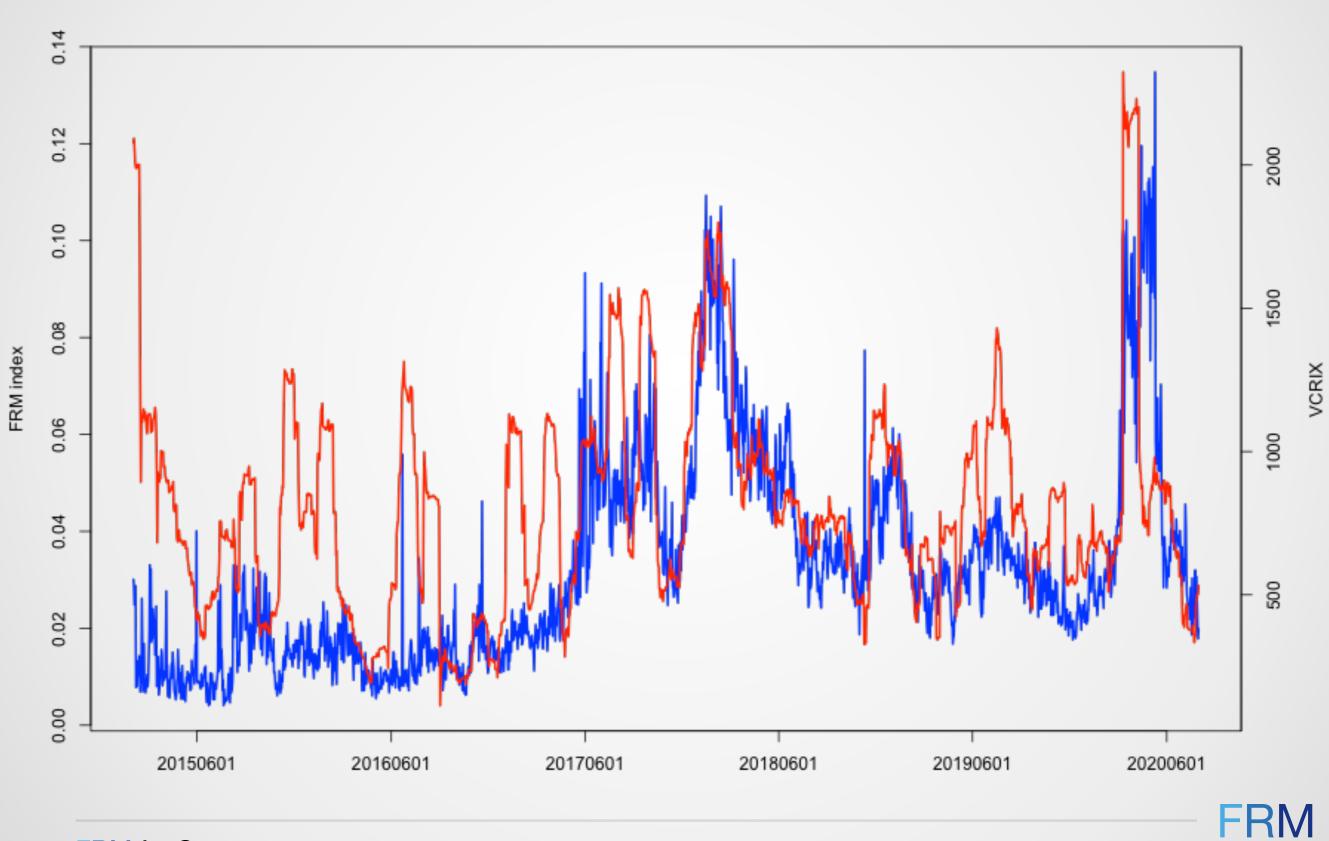


44

Backtesting

- Assess model validity based on the usefulness of its predictions and not on the sophistication of the assumptions
- How well the risk measured by individual lambdas or their average reflects the short-time riskiness of cryptos
 - Riskiness benchmark: rolling historical volatility
 - Estimation window: 63 days

FRM@Crypto Index and VCRIX



Graphical backtest, $\tau = 5 \%$

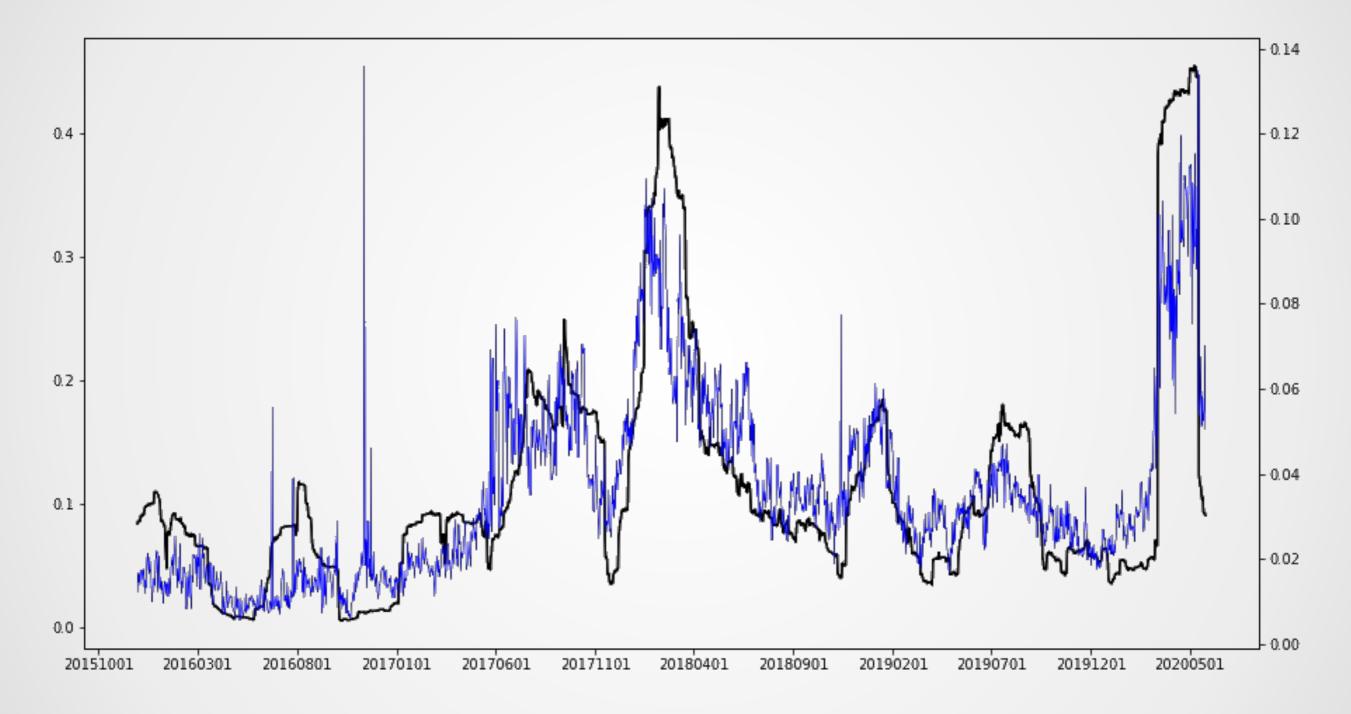


Figure: FRM@Crypto for $\tau = 5\%$ and CRIX rolling variance 20150404–20200525

FRM

Graphical backtest, $\tau = 10 \%$

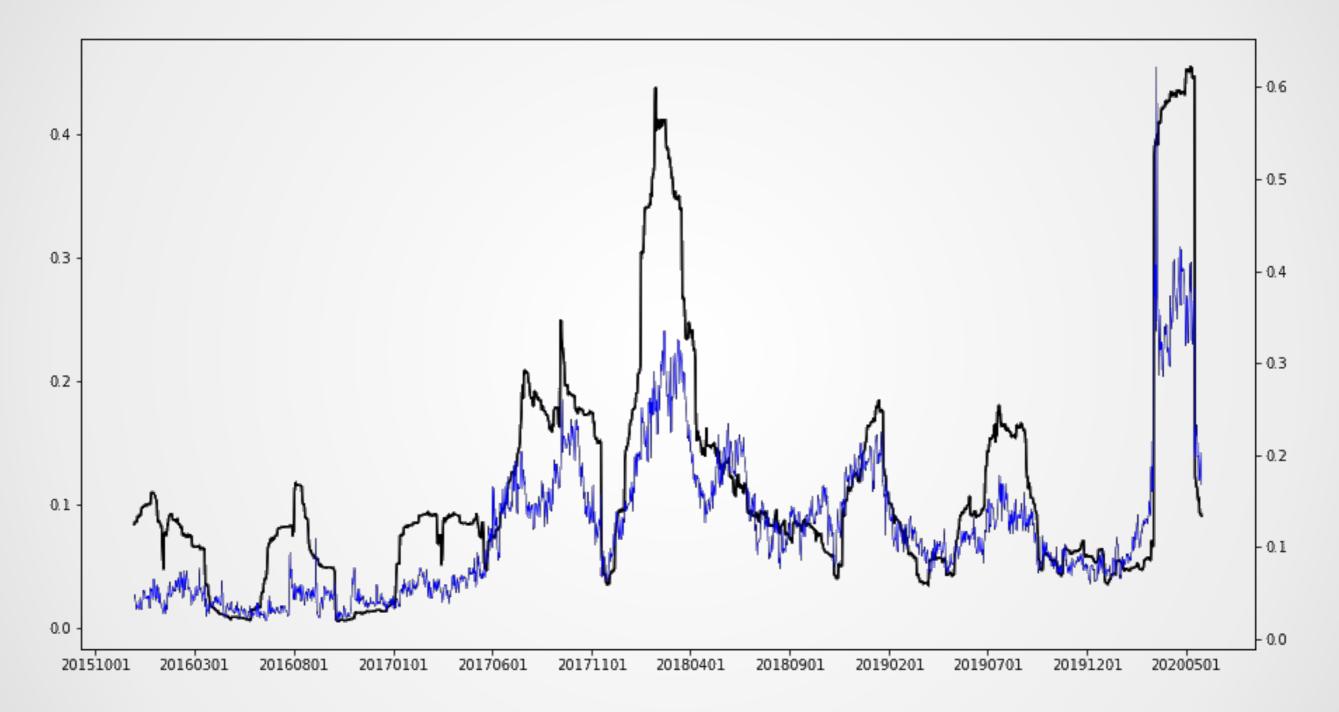


Figure: FRM@Crypto for $\tau = 10\%$ and CRIX rolling variance 20150404–20200525

FRM

Graphical backtest, $\tau = 5 \%$

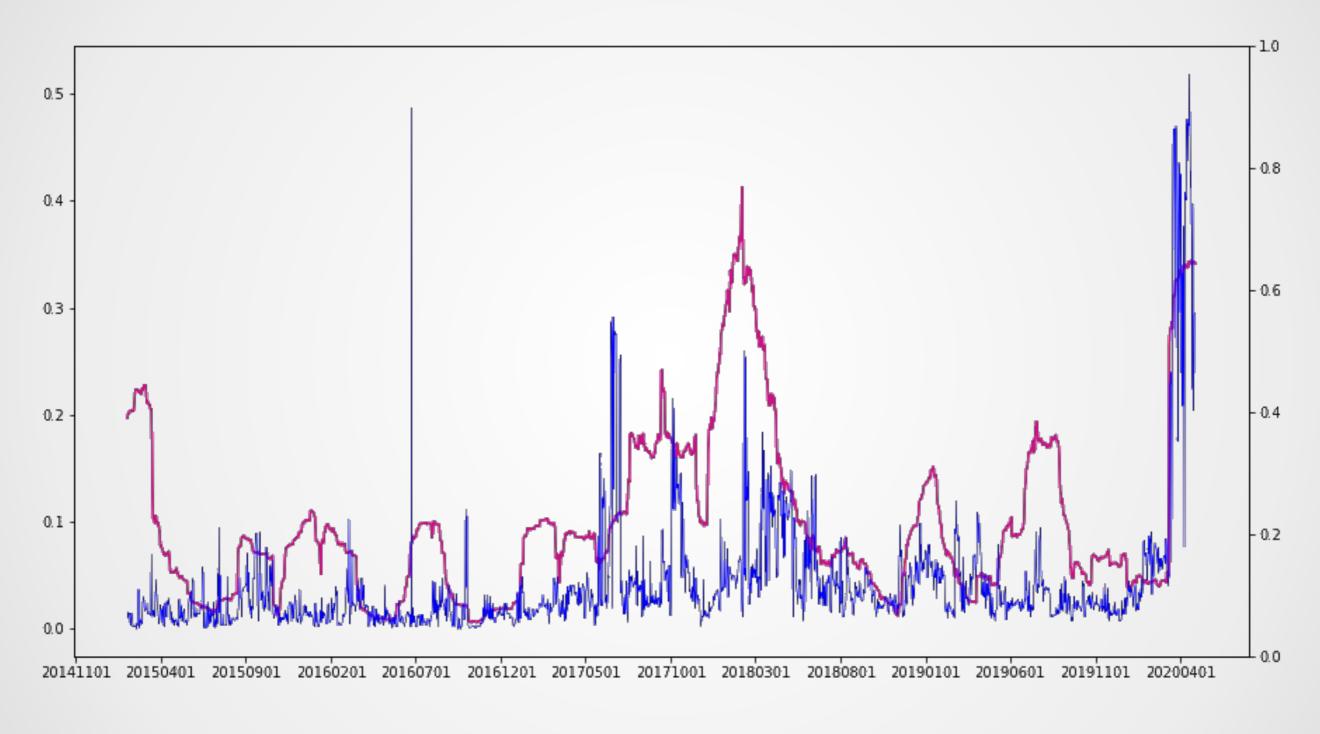


Figure: **BTC lambda** for $\tau = 5 \%$ and **BTC rolling variance** 20150201–20200428

FRM

Graphical backtest, $\tau = 10\%$

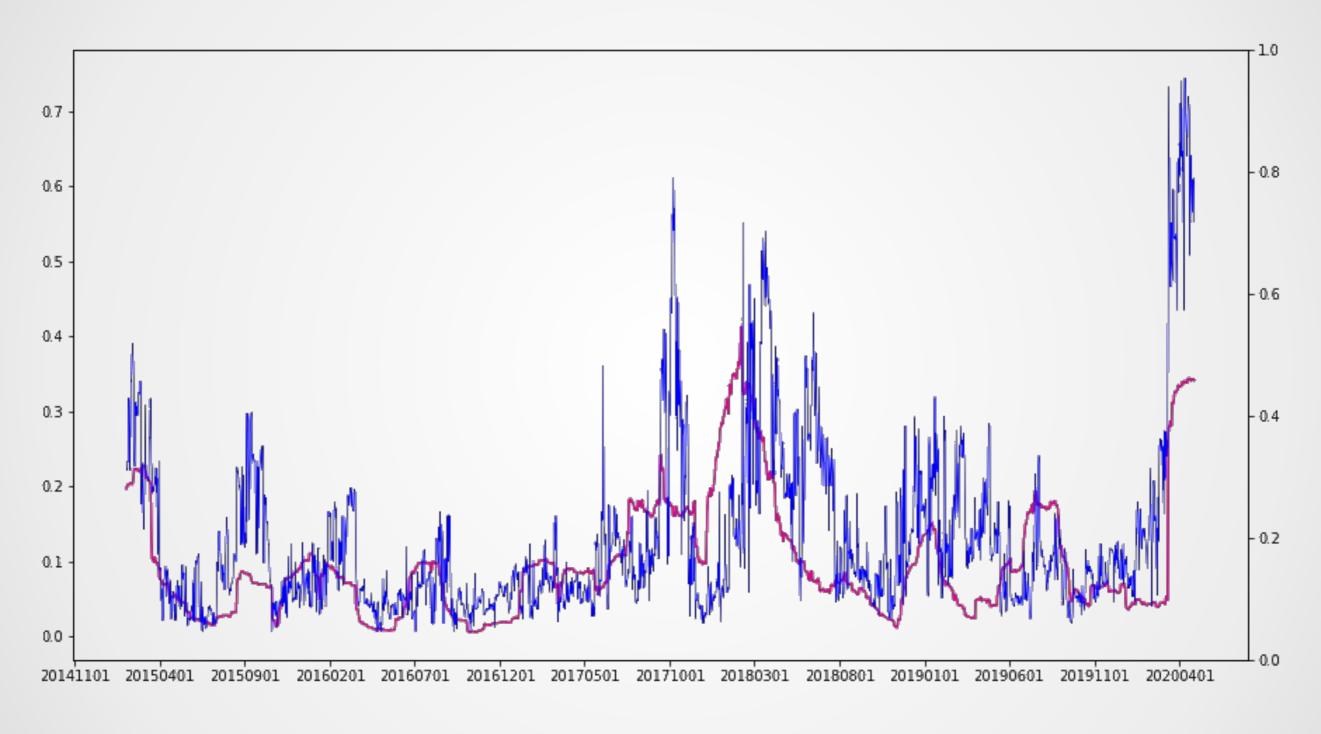


Figure: BTC lambda for $\tau = 10\%$ and BTC rolling variance 20150201–20200428

FRM

Graphical backtest, $\tau = 5 \%$

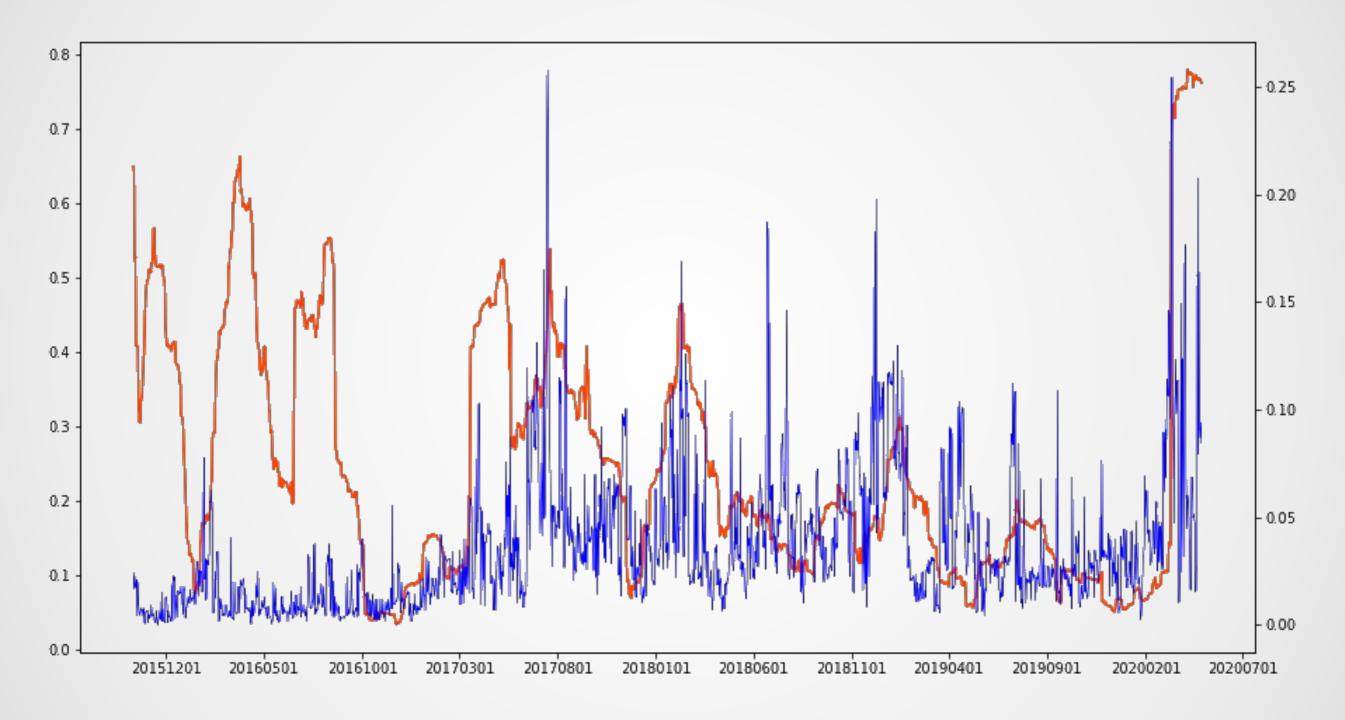


Figure: ETH lambdas for $\tau = 5 \%$ and ETH rolling variance 20151011–20200428

FRM

Graphical backtest, $\tau = 10\%$

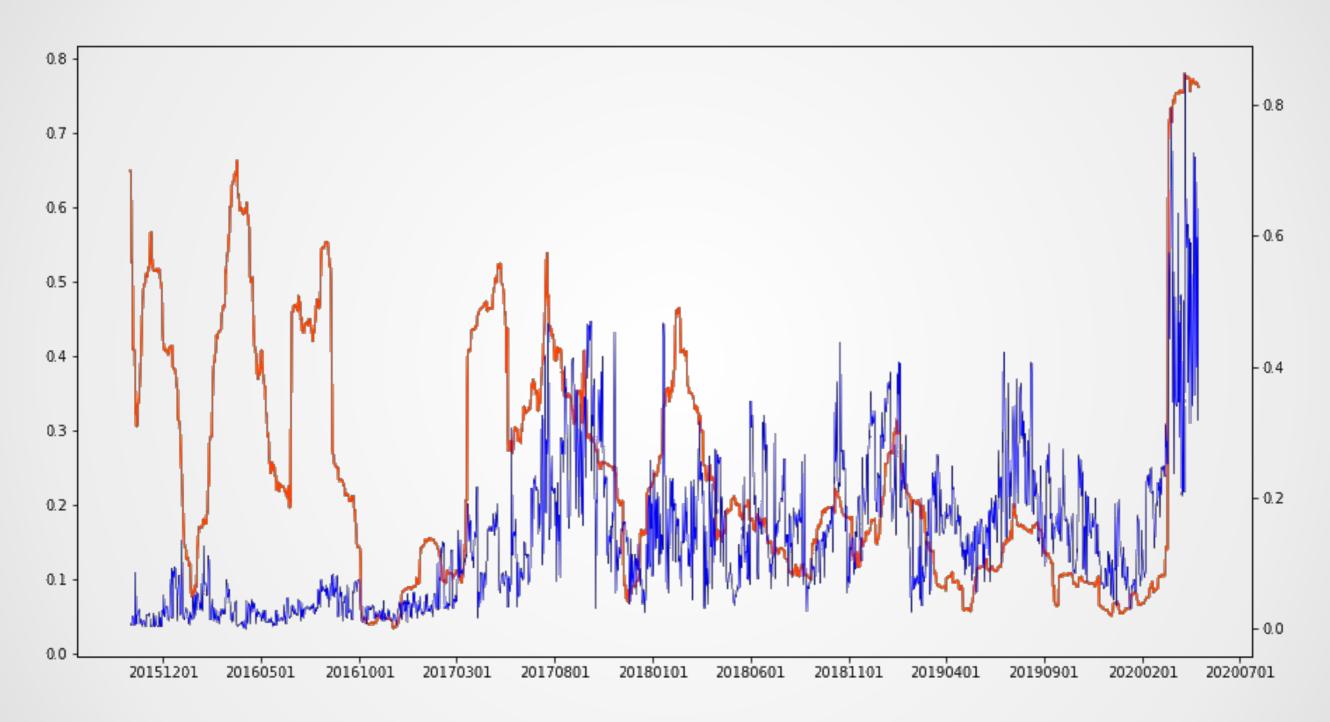


Figure: ETH lambdas for $\tau = 10\%$ and ETH rolling variance 20151011–20200428

FRM

Crypto Returns and the Pricing Kernel

According to the basic pricing equation

$$\Xi_t^{\mathbb{P}}[m_{t+1}R_{i,t+1}] = 1 \tag{4}$$

 m_t marginal rate of substitution, $R_{i,t}$ return of *i*-th crypto.

Considering log returns $r_{i,t} = \log(R_{i,t}) \approx R_{i,t} - 1$

$$\mathbf{E}_{t}^{\mathbb{P}}[(1+r_{i,t+1})\,m_{t+1}] \approx 1 \tag{5}$$

Substituting in (4) risk-free rate $R_{i,t} = R^f$

$$\mathcal{E}_t^{\mathbb{P}}[m_{t+1}] = 1 \tag{6}$$

Link to Sharpe Ratio

Combining (5) and (6)

$$\mathsf{E}_t^{\mathbb{P}}[m_{t+1}r_{i,t+1}] \approx 0 \tag{7}$$

Hence, the "Sharpe" ratio of $r_{i,t}$ is bounded by $\sigma(m_t)$

$$(7) \prec \succ \underbrace{\mathbf{E}_{t}^{\mathbb{P}}[m_{t+1}]}_{=1} \underbrace{\mathbf{E}_{t}^{\mathbb{P}}[r_{i,t+1}] + \operatorname{Cov}_{t}^{\mathbb{P}}[m_{t+1}r_{i,t+1}]}_{=1} \approx 0$$

$$\prec \succ \underbrace{\mathbf{E}_{t}^{\mathbb{P}}[r_{i,t+1}]}_{=1} \approx -\underbrace{\operatorname{Corr}_{t}^{\mathbb{P}}[m_{t+1}r_{i,t+1}]}_{\in[-1,1]} \sigma(m_{t+1}) \sigma(r_{i,t+1})$$

$$\succ \left| \underbrace{\mathbf{E}_{t}^{\mathbb{P}}[r_{i,t+1}]}_{\in[r_{i,t+1}]} \right| \leq \sigma(m_{t+1}) \sigma(r_{i,t+1}) \tag{8}$$

Role of Lambda as Penalisation Parameter

An analogous inequality to (8) holds for the empirical distribution

$$\left| \widehat{\mathbf{E}}_{t}^{\mathbb{P}}[r_{i,t+1}] \right| \leq \sigma(\widehat{m}_{t+1}) \widehat{\sigma}(r_{i,t+1})$$

$$\succ \left| \mathbf{E}_{t}^{\mathbb{P}}[r_{i,t+1}] \right| - \left| \widehat{\mathbf{E}}_{t}^{\mathbb{P}}[r_{i,t+1}] \right| \leq \sigma(m_{t+1}) \,\sigma(r_{i,t+1}) - \sigma(\widehat{m}_{t+1}) \,\widehat{\sigma}(r_{i,t+1}) \tag{9}$$

Due to persistency of volatility of returns $\hat{\sigma}(r_{i,t+1}) \approx \sigma(r_{i,t+1})$

 $\lambda_{i,t}$ chosen with CV tries to minimise the LHS >

$$\lambda_{i,t} \propto \sigma(\widehat{m}_{t+1}) - \sigma(m_{t+1})$$

FRM in FinTech, Cryptos, ...

Vol 1. 2019 on Crypto Currencies

udger Overbeck Editors

D Springer

Volume 1 • Number 1 • January 2019 • pp. 1 – xx

EDITORS: Wolfgang Karl Härdle and Steven Kou

Digital Finance

Smart Data Analytics, Investment Innovation, and Financial Technology

Michael Althof Vanessa Guarino Wolfgang K Härdle Rui REN

Anna Shchekina

Alla Petukhina

Ang LI

Souhir Ben Amor Alex Truesdale Ilyas Agakishiev

References

- Adrian J, Brunnermeier M (2016) CoVaR, American Economic Review, 106 (7): 1705-41, DOI: 10.1257/aer.20120555
- Buraschi A, Corielle F (2005). Risk management of time-inconsistency: Model updating and recalibration of no-arbitrage models. J Banking and Finance 29: 2883–907
- Chao SK, Härdle WK, Wang W (2015) Quantile Regression in Risk Calibration. Handbook for Financial Econometrics and Statistics, Cheng-Few Lee, ed., Springer Verlag, DOI: 10.1007/978-1-4614-7750-1_54.
- Härdle WK, Wang W, Zbonakova L (2018) Time Varying Lasso, in Applied Quantitative Finance 3rd ed, (Chen, Härdle, Overbeck eds.) Springer Verlag, ISBN 978-3-662-54486-0
- ☑ Keilbar G (2018) Modeling systemic risk using Neural Network Quantile Regression, MSc thesis
- □ Li Y, Zhu JL (2008) L1 Norm Quantile Regression, J Comp Graphical Statistics 17(1): 1-23
- □ Osborne MR, Presnell B, Turlach BA (200) J Comp Graphical Statistics Vol. 9, 319-337
- Yuan, M. (2006), GACV for Quantile Smoothing Splines, Computational Statistics & Data Analysis, 50: 813{829

FRM financialriskmeter for Cryptos

Michael Althof

Vanessa Guarino

Rui Ren

Anna Shchekina

Humboldt-Universität zu Berlin Ivb.wiwi.hu-berlin.de Charles University, WISE XMU, NCTU 玉山学者

Expectile as Quantile

 $e_{\tau}(Y)$ is the τ -quantile of the cdf T, where

$$T(y) = \frac{G(y) - xF(y)}{2\{G(y) - yF(y)\} + y - \mu_Y}$$

and

$$G(y) = \int_{-\infty}^{y} u \, dF(u)$$

FRM for Cryptos

FRM

Cryptocurrencies List (as per 24 May 2020)

Symbol	Name	Last Price (USD)	Market Cap (USD)	24H Volumes (USD)
BTC	Bitcoin	8946.62	164481372045	27576284769
ETH	Ethereum	203.41	22618375461	9311268064
XRP	XRP	0.19	8625857668	1236573262
BCH	Bitcoin Cash	226.73	4175489941	2639464553
BSV	Bitcoin SV	189.55	3492449683	939543182
LTC	Litecoin	42.79	2777753749	2307602277
EOS	EOS	203.46	22568743176	9923363991
BNB	Binance Coin	16.17	2393754841	258305237
XTZ	Tezos	2.70	1923243499	82421482
LINK	ChainLink	3.87	1469368639	358145283
ADA	Cardano	0.053	1656068633	100244607
XLM	Stellar	0.066	1333292859	323203952
XMR	Monero	62.03	1089971286	91193644
TRX	TRON	0.015	970220373	1372904826
HT	Huobi Token	8947.42	164496303531	27970959275

Source: www.coingecko.com

61